UNIT-1V

S/W Project planning Objectives, Decomposition techniques : S/W
Sizing. Problem-based estimation, Process based estimation, Cost Estimation Models
. COCOMO Model. S/W Design : Objectives, Principles, Concepts. Design

methodologies Data design, Architectural design, procedural design, Object oriented
concepts.

Unit- IV

il. Soﬁ:vs ‘are cha.racterietics 220 -230
2. So&ware Project Planing 23] =285
13. DeSIgn Concepts And models 286 --397

SOFTWARE C HARACTERISTICS

1. The software problems
1.1 Cost of Software
1.2 Rehability
1.5 Change and Rework
- Software as a Process
2.1 Predictability
2.2 Support Testability and Maintainability
2.3 Early Defect Removal and Prevention
2.4 Process Improvement
\ 3 Software as a Product J

[

Introduction

The electronic computers evolved in the 1940s, Then, the challenge was the
hardware and all the early efforts were focused on designing the hardware. Hardware
was where most technical difficulties existed. But then slowly with the advent of
new techniques. the problem subsided. With the availability of cheaper and powerful
machines, higher level languages, and more user-friendly operating systems, the
applications of computers grew ra pidly. In addition, the nature of software engineering
evolved from simple programming exercises to developing software systems, which
were much larger in scope, and required great effort by many people.

The techniques for wrting simple programs could not be scaled up for developing
software systems, and the computing world found itself in the midst of a “software
crisis”. At that time, the term software engineering was coin; in the conferences
sponsored by NATO Scicnce Committee in Europe in 1960UDe IEEE Glossary of
Software Engineering defines software engineering as: “The application of a
systematic, disciplined, quantifiable approach to the developmeni, operation and
maintenance of software; ie., the application of engineering to software.

[Now computer systems arc used in such diversc areas as business applications,
scientific work, video games, air traffic control, etc. This increase in the use of

compulters in every field has led to an increase in the need for software dramatically

Software Characterisucs 221

Further more the complexity of these systems is also increasing - imagine the complexity
of the software for aircraft control or a telephone network monitoring system. The
complexity has grown at such a pace that one is not able to deal with it. meaql_.ul:!y.
many years after the software crisis was first declared, one finds that it has not yet
ended. Software engineering is the discipline whose goal is to deal with this problem.

Today, software takes on a dual role. It is a product, and at the same time, the
vehicle for delivering a product. As a product, it delivers the computing potential
embodied by computer hardware. Whether it resides within a cellular phone or
operates inside a mainframe computer, software is an information transformer -
producing, managing, acquiring, modifying, displaying, or transmitting information
that can be as simple as a single bit or as complex as a multimedia simulation.

As the vehicle used to deliver the product, software acts as the basis for the control
of the computer (operating systems), the commumnication of information (networks),
and the creation and control of other programs (software tools and environment

In this chapter, first the major reasons for the software problem and the major
problems that software engineering faces are discussed. And then to gain an
understanding of the software, some of the characteristics of software - as a product
and as a process are discussed.

1. The Software Problem :

Software is not merely a collection of computer programs. IEEE defines
software as a collection of computer programs. procedures, rules, and associated
documentation and data. Unlike a program, the programming system product is
generally not used only by the author of the program but is used largely by other
people other than the developers of the system.

It is well documented or aided by other means, to help other people use the
program. In a program, the presence of bug is not usually a major problem because
the author itse!f generally uses it; if the program crashes the author will fix the
problem and start using it again. These programs are not designed with such issues
as portability, usability and rehability in mind,

Software falls under the category of programming systems product. The user
may be of different backgrounds and so it is geaerally provided with a proper user
interface. The programs are thoroughly tested before operational use so that there
are no bugs left behind. And as diverse people having diverse hardware environment
use the product, portability is a key issue.

As a thumb rule, a programming systems product costs approximately ten times
more than the corresponding program. The software industry is usually interested in

L.1. Cost of Software :

The production of software is a labour intensive activity. Over the past few
decades the cost of hardware has consistently decreased. With the advent of newer

222 Svstem Design Concept

and faster processors the cost of computing power has decreased. Similarly, the
cost per bit of memory decreased more than 50 fold in two decades. On the other
hand, the cost of software is increasing. Building it and maintaining it are labour
intensive activities, but delays in delivery can be very costly and any undetected
problems may cause loss of performance and frustrate users.

Fig. 1 shows that software development and maintenance eosts have increased
in the last few decades while the hardware cost has decreased constantly during the
same period.

The size of software is usually measured in terms of Delivered Lines of Code
(DLOC) and the productivity is measured in terms of DLOC per person-month,

The cost of developing software is generally measured in terms of person-months
of effort spent in development,

100
a0 T
Hardware st
80 T
40 +
9 Software
Maintenance
20 1T
ol | }
1955 1970 1985

Fig. 1 : Hardware-software cost trends

The current productivity in the software industry is usually in the rang: of 300
to 1000 DLOC per person-month. And software companies charge the client for
whom they are developing the software upwards of Rs. 1.00,000 per person-year or
more than Rs. 8.000 per person-month Le., with the current productivity fizures of
the industry, Rs. % 1o Rs. 25 is charged per line of code. Moderately sized projects
casily end up with software of 50,000 LOC. With this productivity, such software
wili cost about Rs. 30 Million and Rs. 12.5 Million.
1.2. Reliability :

There are many Instances quoted about software projects that are behind
schedule and have heavy cost overruns. The software industry has gained a reputation
of not being able to deliver on time and within budget. For example, a Fortune 500
consumer products company plans to get an information system deveioped in nine
months at the cost of Rs. 2,50,000 Two vears later, after spending Rs. 2.5 million,
the job was still not done, and it was estimated that another Rs. 3.6 million would be
needed. The project was scrapped (because, the extra cost of Rs. 3.6 million was

not worth the returns).

There are runaway projects in software industry. These are not projects that
are somewhat late or over budget - it is one where the budget and schedule are out
of control, The problem has become so severe that it has spawned an indusiry of its

Software Characteristics 223

own for which there are many consultancy firms that advice how to rein such
projects.

The software industry is popular for not delivering software within schedule
and budget and of producing software systems of poor quality, Many failures occur
due to bugs that get introduced into the software, and as a result do what it is not
supposed to do. For ¢.g. many banks have lost millions of rupees due to inaccuracies
and other problems in their software. The software failure is very different from the
failure of mechanical or electrical systems. These systems fail because of aging but
software fails due to bugs or errors that get introduced during the design or
development process. Hence, even though software may fail after operating correctly
for some time, the bug that causes that failure was there from the start.

1.3. Change and Rework :

Oace the software is installed and deploved, it enters the maintenance phase.
This phase is usually divided into two tvpes:

Corrective maintenance: This type of maintenance is needed to correct or debug
some residual errors in the software as and when they are discovered leading o the
software getting changed. Many of these errors surface only after the svstem has
been in operation, sometimes for a long time.

Adaptive maintenance: Software must be often upgraded and enhanced to include
more features and provide more services. One the system has been deploved: the
environment in which it operates also changes. The changed software then changes
the environment, which in turn requires further change. This phenomenon is called the
law of software revolution. Maintenance duc to this is adaptive maintenance.

Maintenance work is based on existing seftware as compared to development
wark that creates new software. So maintenance revolves arcund understanding
existing software and maintainers spent most of their time trving to understand the
software they have to modify. To test whether those aspects of the system that are
not supposed to be modified are operating as they were before modification, regression
testing is done. It involves executing old test cases to test that no new errors have
been introduced. '

Thus, mainterance involves understanding the existing software (code and
related documents), understanding the effects of change, making the changes - to
both the code and the documents - testing the new parts (changes), and retesting the
old parts that were not changed.

One of the biggest problems in software development, particularly for large
and complex svstems, is that the requirements are not understood. The software
does what it is not supposed to do. The requirements are “frozen”™ when it is belicved
that they are in good shape, and then the development proceeds. Buu as software is
developed the client gets a better understanding of the svstem and new requirements
are discovered which were not specified earlier.

This leads to rework: the requirements, the design, the code all have to be
changed to accommodate new requirements, It is estimated that rework costs are
30 to 40% of the development cost,

224 System Design Concept

2. Software as a Process :

A software process is a sct of activities, together with ordering constraints
among them, such that if the activities are performed properly and in accordance
with the ordering constraints, the desired result is produced. The desired result is,
high-quality software at low cost. Clearly, a process that does not scale up (i.c.,
cannot handle large software projects) or cannot produce good-quality software is
not a suitable process,

The fundamental objectives of a process are optimality and scalability.
Optimality means that the process should be able to produce high-quality software
at low cost, and scalability means that it should also be applicable for large software
projects. To achieve these objectives, a process should have some properties. Some
of the important ones are discussed here.

2.1 Predictability :

Predictability of a process determines how accurately the outcome of following
a process in a project can be predicted before the project is completed. If it is not
predictable, the process is of limited use. If the past experiences to control costs
and ensure quality are used, a process that is predictable must be used. With low
predictability, the experience gained through projects is of hittle value. A predictable
process is also said to be under statistical control.

Project
Fig. 2 : Process under statistical control
A process is under statistical control if following the same process produces
imilar r:-m:ullss_ “This is show in Figure 2; the y-axis represents some prupurt_\'.cf
3t st (quality, productivity, ctc.), and x-axis represents the projects. The dgrk line
?"031“5 o mcf;aluc of the ﬁrojv.:rly for this process. Statistical control implies that
=]
::os:; :rczif:ts will be within bound around the expecied value.
1 1] f the property should remain
isti trol also implies that the value o ‘
s .Stansm:fal ;ml;;mnd if the same process is followed. £ 20 errors per 100 LQ(,
wm‘unbcha:;:;lcz; n thr.:. past for a process, then it is cxpected that with a high
baws e that will be detected during testing in future
ili is is the range of crrors that w
probability, this is

projects.

o —

Software Characteristics

225
2.2. Support Testability and Maintainability ;
As seen carlier, maintenance costs enerally exceed

during the life of the software. Thus, to n:dgucc the ‘ovcrall m;tlifd::;t;ﬂ;ﬂﬂu:emm
of development should be to reduce the maintenance ¢fort. According toa snm
done by Bell Labs, the effort distribution within phases of a software process ::Z
shown in Table 1. And similarly, the distribution of how programmers spend their
time on different activitics is shown in Table |

Requirements 10%
Design 20%
Coding 20%
Testing 50%

Table 1 : Effort Distribution with different phases

Writing Programs 13%
Reading Programs and manuals 16%
Job communication 32%
Others (including personal) 3@‘

Table 2 : How programmers spend their time

The Figures shows that most of the effort is spent in testing of software while
only a small part is spent in programming. So, the goal of the process should not be
to reduce the effort of design and coding, but to reduce the cost of testing and
mainienance. Both testing and maintenance depend heavily on the design and coding
of the software, and these costs can be considerably reduced if their Software is
designed and coded to make testing and maintenance easier. Hence, during the
early phases of the development process the prime issues should be “can it be easily
tested” and “can it be casilv modified”

2.3. Early Defect Removal and Prevention :

Errors can oceur at any stage of the development cyele. An example distnbution

of error occurrences by phase is

| Requirement Analvsis 20%
|_Design 30%
| Coding 50%

Table 3 : Distribution of Defect Removal

As can be seen, errors occur throughout the development process. But the
cost of correcting the crrors of different phases is not the same and depends on
when the error 15 detected and corrected. The relative cost of correcting errors
originated in requirement phase as a function of where they are detected is shown in
Figure 3.

226 System Design Concept

As the Figure shows. an error that occurs during the requirements phase, if
corrected during acceptance testing, can cost up to 100 times more than if it were
corrected in the requirements phase itself. The reason is fairly obvious. The error in
the requirements phase will affect the design and code.

And if the error were corrected after coding, both design and code would have
1o be changed. thereby increasing the cost of correction. So, one can deduce that
errors should be detected in the same phase itself in which it has originated and not
wait until testing
2.4. Process Improvement :

A process is not a static entity. As the cost and quality of the software are
dependent on the software process, it should be improved to satisfy goals as quality
improvement and cost reduction. The process must leamn from the previous
experiences. Each projeet dong using the existing process must feed information
back to the process itself, which can then use this information for self-improvement,

1000

Requirements Daesign Code Davalopment .ﬁ-r.c:_p‘tmm Oparation
Test 51

(=
Phase in Which Eror was Detecled
Fig. 3 : Cost of Caorrecting Errors

3. Software as a Product :

I'he goal of any engincering activity is o build something- a produet. The civil
engineer builds a dam, the acrospace engineer makes a plane, and the clectrical engineer
makes a circuit. The product of softwarc engincering is a “software system’”. It is not
as tangible as the other products, but it is a product nonctheless. It serves a function

Software unlike other products is not a physical entity. One cannot touch or
feel it to get an idea about its quality. Software is a logical entity and therefore. it 185
different from other engineered products.

To gain an understanding of the software, examine the characicristics of
software that makes it different from .other things that human beings build.

227

Software

Sofiware Characleristics

Software is developed or engineered, it is not manufactured :
does not automatically roll cut of an assembly line. Sure, as one would learn later,
there exists a number of twols for automating the process, especially for the generation
of code, but development depends on the individual skills and creative abilities of
developers. This ability is difficult to speeify, difficult to quantify and even more
difficult to standardize.

In most engineering disciplines, the manufacturing process is considered
carefully because it determines the final cost of the product. Also, the process has
to be managed closely to ensure that defects are not introduced. The same
considerations apply to eomputer hardware products. For software, on the other
hand, manufacturing is a trivial process cf duplication. The software production
process deals with design and implementation, rather than manufacturing,

Software is malleable : The characteristic that scts software apart from other
enginecring products is that software is malleable. The produet itself can be modified
{as opposed to its design) rather casily. This makes it guite different from other
products as cars and ovens.

The malleability of software is often misused. While it is certainly possible to
modify a plane or a bridge to satisfy some new needs - as to make it support more
traffic but this is not as easv. This modification is not taken lightly and it is not
directly attempted on the product itself. the design is modified and the impact of
change is verified extensively. Software engineers are also often asked to make
medifications in their system. Duc to the malleability property, n practice it is not
casy.

The code may be changed easily. but meeting the need for which the change
was intended is not necessarily done so easily. One should indeed treat software
like other engineering products in this regard: a change in software must be viewed
usr;changc in the design rather than in the code. which is just an instance of the
product,

) The property of malleability of software can be used to advantage - provided it
is done with a lot of discipline, this 15 where procedures and quality standards for
making modifications become important.

Software does not “wear out™ : The relationship between falure rate and
time for hardware is shown in Figure 4. As can be seen, the figure is shaped as a
bathtub and therefore often called as “bathtub curve™. The relationship depicts that
the hardwarc shows high failure rate in its carly life eyele (these failures are due to
manufacturing or design defects). defects arc corrected, and the failure rate falls to
a steady-state level for some period of time. As ume passes by, the failure rate rises
again as hardware begins to wear out duc to cumulative affects of dust, vibration, |
abuse, temperature extremes, and many other environmental maladies.

[
ra
o

System Design Coneept

'll'lfall'lt
4 mortality” “wear out”

Fig. 4 :Hardwarc Failure Curve

But for software thie curve is not as shown in Figure 4 because the software is
not susceptibie to environmental maladies, In theory, the curve for software failure
against time should be as shown in Figure 5. The defects in the carly stages will
cause high failurc rates in the carly life cycle but as the defects are.corrected, the
failure rate drops and the curve flai

ttens as shown in figure. But this is the over
simplification of the actual failure rate of the software,

Failure Rale

Time

Continues at same rate
uniil ohsolescence

Failure Rate

—

—

Time

Fig. 5 :1dcalized software Failure Curves

The actual failure rate for software is as shown in Figure 6. This contradiction
from the carlier curve is because, during its life, the software undergoes maintenance,
As changes are made, some new defects are :mtrodua.‘d. cz_nusing the failure rate to
spike and as the defeets are corrected the failure rate again drops. But before the
curve can return to the onginal steady-state, a new change is requested, causing the
curve to spike again, Slowly, the minimum failure rate level begins to rise- the
software is deteriorating due to change.

Software Characteristics

229

Failure Rate

ldealized curve

—

Time

Fig. 6 : Actual Software Failure Curve

Another aspect of wear illustrates the difference between hardware and
software. When a hardware component wears out, the part is replaced by a spare
part. But no such spare pars exist for software. Therefore, the maintenance of
software is much more difficult than the maintenance of hardware.

Most Software is Custom-Built, rather than being Assembled from

Existing Components : [f onc looks at mast of the other enginecred products, one
will find that in manufacturing these, a design is first made identifving the varioys
¢ are then put together as per the ornginal design,
This approach affords an enormous amount of flexibility. Any number of people
could be working independently in producing different components- so the
manufacture of onc-assembly could be entirely independent of another.

Now, if the organisation wants to increase production quantitics or decrease
the production eyele time, it can easily subcontract some of the Jobs. So the final
product is merely putting together several independently manufactured components,
For example, for building hardware, the digital components are assembled 50 that
proper function can be achieved. These digital components can be ordered “off the
self”,

Sadly, software engincers do not have this luxury. The software can be ordered
off the shelf but as a complete unit. not as a software component that can be

v, this situation is changing rapidly,

ted in the creation of

hanging but this is only
This concept is usually known as “software

230 System Design Concepy

Short Questions:

What do vou mean by cost of Software 7

: liabil ~ SOFTWARE PROJECT PLANING
2. Describe software reliability 7 1 -
3

is prodictability 7 . T a - :
3. Whatisp i Objectives
Very short Questions {
3 " 1. Why is Project Management Important”?
. What do you mean by software problem ; 2. Project Initiation bt
2. What is Maintainability of software 7 2.1. The Need
2.2 Scope of Work
Long Question : : 2.3, Feasibility Study
i . . 2.4, Evaluation of Options
I. What are the software problem? Discuss in details. 2.4.1. Methodology -
2. Discuss the software characterstics. 2.5, Sizing and Effort Estimation
1

Describe the characterstics of the software as a Process. 151 Plrogm.m Complexity Method
; 252 Lines-of-code Method
. Describe the characterstics of the software as a Product. 153 CO?OMO Model
254, Basic COCOMO
255, Intermediate COCOMO
¢ 2.6. Pmject Cost Estimates
QQa 2.6.1. Manpower Cost
2,6.2. Hardwarc Cost
26.3. Software Cost :
264 Travel Cost
2,6.5. Traming Cost
26.6. Administration Cost
3. Risk Analysis
3.1. Manpower Risk
3.2, Technology Risk
3.3. Customer/User Risk
34, Environment Risk
4. Projeet Planning
4.1 Mcthodology
4.2, Risk

\. 4.3, Quality Plan

£

e System Design Concept

Software Project Plani

4 4. Configuration Management Plan ﬁ
45, Project Scheduling
4.5.1. Identification of Activitics
4.5.2. Allocation of Responsibilitics
4.53. Scheduling of Activities
4.5.4. ldentifying Milestones
4.5.5. Pictorial Descriptions
4.5.6. The Critical Path
Resource Plan
5.1. Hardwarc
5.2. Software
5.3, Tools
5.4, Commumication
6. Project Trazking and Oversight
6.1 Schedule Tracking
6.2 Pesource Tracking
6.3, Cost Tracking
6.4, Management Owversight
7. Project Metrics
7.1 Schedule & Effort Metrics
7.2. Quality Metrics
7.3 Cost Metries
% Project Closure
9 Miscellancous Ttems
9.1 People Management
92 Resource Management
9 3, Quality v/s Schedule
9.4, Systems Integration Issues
9 5 Idealism v/s Realism
9.6. Sub-Contractor Management

w

>
‘hy i j ment Important?
‘hy is Project Manage . (o N
1. “’;:T;im:t |1lu:mgcl1|cni has become an nbsal_uu. noccssn? t:) :?:u::cﬂ; i
f any software project. For any project. project ma_nagu?;:;mum ok {:ximm ;
:_: h-m's n-g the development of an acceptable s_vstcmd?ttc a :: s
tr?'ﬂ'm-d ume frame. Project mismanagement can L. 1rl ety
sty best of analysis and design methods. The main resu
Vs S analy:
o i ire ceds of the clients
o Unfulfilled or unidentified requirement or needs o
Cost over runs
Late delivery

g z i i and m:m-asf‘d-
fach phase and activity of a project b e T
-ac £

Iy ey O

techni '

completion of a project. It includes th:l-:’gl:::-cilu;}ﬁlc“t.:anagw e
= Estimating resource requirements o
® Scheduling tasks and events
® Providing for training and site preparation

. Sclegti.ug qualified staff and supervising their work

* Monitoring the project’s program

= Documenting

® Periodic evaluating

* Contingency planning

From these ﬁ_mclions. Wwe can see that project management is a specialized
nraa__SoFtwam Project Management is a very vast area and covers the management
function of planning, organizing, staffing, leading and controlling software projects
Broadly, the following is what cach of these entails; !
Planning: Predetermining

achieve the specified objectives

: Orgnnizing_: Itemizing the project activities and then grouping these activitics *
lng‘:cnll_v. Italso involves assigning authorities and responsibilities for each of these
tasks,

the course of action for the project to be able o

; Staffing: Sclecting appropriate personnel required to do the tasks as per the
plan.

_ Lea_ding: Creating an atmosphere that will assist and motivate people about
their assignment tasks in the best manner possible.

C«_mtmlling: Ensuring that the project goes as per plan
correcting the performance activitics.

Italsa uses tools and software packages for planning and managing each project
Managing projects also requires the follow ing:

by mecasuring and

1. Top management commitment to setting project prioritics and allocating
resources to approved projects.

2. Active user participation to wdentify information needs, cvaluate proposed
improvements on a cost/benefit basis, provide committed resources and be receptive
to training when scheduled.

3. Along-range plan that includes gencral project prioritics, objectives, schedules
and required resources.

Included wn this is pressure from users who require the systems department to
accept impractical tasks or deadlines. The result is rushed, compromised project.
contrary to good system development practices. A further difficulty found in many
organizations occur when individual departments acquire microcomputers without
knowing about their requirements or consulting with the centralized computer facility.
The result is often uncoordinated confusion that makes it difficult to plan or control

projects.

234 System Design Concept
Project Management is the most talked but also the most ignored arca in any
software project. The following key topics are covered under project management;

e Project Imitiation - Project initiation activitics covering the need for the system,
Feasibility Study, risk associated with a software project, Evaluation of Options
and Estimation methods. Under Evaluation of Options a quantitative weighted points
method has been described to evaluate various options. Under Estimation, Program
Complexity methods and Lines of Code method, the most commoniy used methods
are described in details with examples.

e Project Planning - This involves preparation of a number of Plans like Quality
Plan, Configuration Management Plan, Contingency Plan etc. The key part of the
Project Plan is Project Scheduling, This is described in detail by a step by step
procedure giving details of Identification of Activities, Apportioning of Efforts,
Setting dcpcndencigs between activities, Allocation of resources. setting start and
end dates for each activities,

e Planning without Tracking is meaningless exercise. Technigues used for
tracking and reviewing progress of projects 1s described under Time Sheets and
review meetings. '

& What vou cannot measure, you cannot improve is an oft quoted statement.
Project Mam.gcmum is no exception and the key metrics relating to schedule, quality
and Costs.

@ There are a number of practical realities relating to Project Management.
These are discussed in a section titled Miscellaneous where People Management,
Resources Management, Priontization between Schedule and Quality, Idealism and

* Realism and Sub-Contractor Management are discussed.

2. Project Initiation :

Project initiation relates to a series of steps which must be done before any
work is started on the project. These steps are essential in order to cnsure that the
project will provide the expected benefits and the requirement value for money. It
also evaluates various options for doing the projects and choosing the best alternative.
The project initiation comprises of the following steps:

e The Need

» Scope of Work

e Feasibility Study

e Evaluation of Options

« Sizing and Efforts Estimation

® Project Cost Estimates Risk Analysis

.1. The Need :
= For any project to start, there must first be need. There must be problem to
solve or an cfficiency to be improved or a bug to be fixed or a system to c.nha;ﬂncw
Without a need. a project cannot start. The need may come from the users o

10

Software Project Planing 235
system, from the people who are managing the system or from the author of the
system. Users have requirements from new systems to meet new business
requirements or enhancements to the existing systems for launching new products
which are adaptations of the existing products. System Manager will have needs to
improve the performance of the system while the designer of the system will have

to weed out the errors in the system and improve performance in the bottlenceks
arcas.

Once the need for the fresh system development or modification to an existing
system has been identified, the need must be ratified. Ratification of the need is not
required for fixing bugs as it is to be done on as-soon-as-possible basic. For all new
requirements, it is a good practice to get the need checked by a second person. This
would help in the following ways:

— to ensure that the need 15 really present

— to verify that the need cannot be met with existing systems

— to evaluate the cost-cffectiveness of the need

— to confirm that all other options than modification to system are closed

The verification of nesd must be done by a senior person who is conversant
with the business requirements and can take decisions on whether the change is
required or not. Every change must have a documented list of benefits of the proposed
change and must also list out the priority from a business need.

The need must be stated clearly as it may lead to misunderstanding at a later
stage. The lead must state the following:

— Owverview of requirement

— Interfaces with other products or systems

— Details of requirements

— Meed for change in existing data

— Benehits of the svstem

— Priority for the system .

— “Initiator and approver of the requirement

Once the need has been identified, the technical personnel must cvaluate the
scope of work for the project.

2.2. Scope of Work :

Once the requirement has been received by software personnel, the first step
is to check if the requirement is stated in clear terms and all details required to
identify the scope of work are available in the specifications. The scope of work
primarily defines the system boundaries. The Requirements Specification Document
is prepared at this stage.

This document gives an overview of the system boundaries and other impacted
areas. On completion of this document, it must be circulated to all impacted partics.
This will cnable all concerned to be aware of the change and ensure that they arc
given time to comment on the requirement and proposed changes. A presentation

)

236 Swstem Design Concept

Softwarc Project Planing

of mqnlrc_rncnt p-l'oduccs much better result as people gencrally don't like to go
through thick specifications. The main objective of this document is to creat awareness
amongst all concerned and get their views if something critical has been missed out.
2.3. Feasibility Study :

.ThJS 15 the Mast appropriate stage to do feasibility study for the system as the
requirements definitions are available at an overview level and not too much efforts
arq spent _0n the project. so if the project is impractical, then this is right stage to
point out if the svstem is {easible or not. The feasibility study is already covered in
the previous chapter

At the end of the feasibility study, if the system is found infeasible, then the
project terminates at this stage. otherwise continues further with the next steps.
2.4, Evaluation of Options :

Once i‘_cas ‘bality is established, then one has to evaluate all options and choose
the one which best mects the requirements in a cost-effective and timely manner,

The most common method for doing evaluation of options is a Weighted Point
Analysis. which 1= deseribed below.

One of the ertical decisions an 1T Manager has to make when appreach by a
user department for automation of some business areas is whether to 2o for a ready-
made package or build a new customized solution. If the readv-made package
solution is selected. should the package be used on "as-is-where-is” basis or should
the package be fine-tuned for the departments” needs. There can be argument for
and against all the options. While packaged solutions offer tested and quick solutions,
they have problems in interfacing the existing systems, meeting complete customer
needs and enhancement 1s a problem as the organization will be dependent on the
vendor technical know-how On the other hand, customized developed will meet
needs totally. bridee casily with existing systems but has the drawback of long lead
tines and untested code How does an IT Manager take a decision under these
circumstances” _

This technigque will cnable the IT Manager to take an objective view of the
situation and recommend the best solution to the user depantment. The benefits of
this technique arc as follows

Objective Decision : The decision o make or buy has a lot of intangibles.
This study will enable clicnt to take an object decision.

Evaluation of Options ' The client will be aware of all the aptions and its pros
and cons.

Structured Analysis @ The customer will be able to clarify his own
requirements as a structured analysis will be done in this study.

The ultimate debiverable at the end of this exercise will he quantitative

evaluation of vanous options, hsting it’s pros and cons and a recommendation of
the best options

1

237

2.4..1 Methodology :
The technigue will be executed in the following stages:
® Reqguirement stage
= Questionnaire stage
e Ranking stage
» Finalization stage

Requirement Stage : This stage must be executed in two stage:
— Assimilation step
— Werification step
. Assimilation Step : In this step, the functional requirements of the area to be
automated are to be accumulated by meeting functional heads and operational staff.
The emphasis should be on gathering all salient features of the desired system
rather than getting the details - in other words, have more breadth of coverage
rather than depth. Apart from functional features, performance requirements,
security, audit, recovery and contingency requirements of the proposed svstem should
ve noted. The preferred choice of hardware and the environment software should

also be noted. The duration of this step will depend upon the number of functional
heads 1o be met,

Verification Step : In this step our understanding of the customer’s needs are
confirmed by the software professional telling each functional head our
understanding of client’s requirements. This step will iron out all inconsistencies
or conflicting information, which has been collected. At the end of this step, the
software professional should have enough information to prepare the questionnaire,
This step should take the same duration as the pervious step.

Questionnaire Stage : This stage will be executed in the following steps:
Preparation Step

— Preparation Step

— Weightage Step

— Circulation Step

— Finalization Step

Preparation Step : In this step, the information gathzred in the previous stage
should be consolidated in the form of a questionnaire. The questionnaire must be
classified into various section based on functionality, security, recovery. audit and
contmgency requirement, Additicnally, there should be a summary questionnaire
and a detailed questionnaire. The objective of the summary questionnaire is to
shortlist products for the detailed evaluation. The detailed questionnaire needs to
be administered on shortlisted products only. Items such as vendor support,
experience, pricing should be part of the questionnaire.

Weightage Step : After the questionnaire id finalized, we must assign
weghtages to all the questions. Weightages should be assigned for summary and
detailed questionnaire Some guidelines for assigning weightage are as follows:

238 System Design Concept

Critical features or absolutely essential requirement - weightage of 5

Important feature but client can manage if some automated work around is
available - weightage of 4

= Essential feature but client can manage with some manual work around -
weightage of 3

® Desirable features which client needs sometime in future - weightage of 2

® Nice to have features which are cosmetics in nature and does not affect the
business needs (like colors or help features) - weightage of 1

Circulation Step - The next step is to get consensus on the questionnaire, It
must be circulated to all function heads. After getting their comments, the revised
questionnaire should be presented in a mecting with all function heads. This will
ensure that all function heads are in concurrence and our understanding of
requirements is correct,

Finalization Step - After getting all the feedback from the client the final
version of the questionnaire must be prepared. At this stage a list of potential supplier
of products with required funetionality should be made. We should write a letter to
all potenual suppliers seeking product information. This information can also be
sought at the start of this stage so that required information is available at the end of
this stage.

Ranking Stage : This stage will have following steps:

— Shortlisting step

— Evaluatien step

— (alculation step

Shortlisting Step - In this. the summary questionnaire is filled up for all vendors
who have responded to the letter. After filling up the questionnaire and multiplyving
by the weightages. an overall score is assigned to cach product. There will be a
cutoff score and only products above the cutoff score should be taken up for detailed
evaluation,

Evaluation Step - Appointments with each shortlisted vendor for the detailed
evaluation should be sought. The detailed evaluation should have a presentacion by
the vendor about the company and the product to be followed by demonstration of
the product. Bascd on the information presented and demonstrated, the detailed
questionnaire should be filled up, at the vendor place so that we can get any
clarifications if required. References checking can be done for any inﬂ:\mali?n. A

three point scoring scale as given below can be used for scoring the features available
in the product.]

Score of 0. if function is not available and cannot be made available

Seore of 2. if function is a work around or functionality can be providec in the
future.

Score of 4. if functionality is available immediately.

12

Software Project Planing 239

Caleulation Step - After all product evaluation have been completed, the overall
score for cach option must be arrived by calculating the weighted average. A summary
sheet companng all products is prepared. This will enable us 1o know the best options
which needs. After fing tuning the scores, all options, which meet a minimum of 70%
requirement, must be included in the final report. If no option meets 70% of the requirement,
then the recommendation must be to go in for customized software development.

Finalization Stage : A final version of the report should be prepared and
packaged. This report along with a soft copy should be handed over to the customer.
A presentation of evaluation to the customer will help in clearing any questions.

A tvpical final evaluation will appear as given below. The nuinber of questions
in the questionnaire have been reduced to keep it simple as we are only trying to
undersiand a concept,

S.N.| Description Weightage | Optionl | Option2 | Option3

1. Socuril}-

L1 Password Control 4 [} 3 3

1.2 Authonzation Features 3 0 6 6

1.3 Limits Checking 2 0 i 4

2 Application

2.1 Maintenance of Account 5 20 20 10
Codes *

22 Alphanumeric Account 3 6 24 &
Codes

2.3 Flexible Coding Structurg 2 0 [i] 4

2.4 Posting of Entrics b 20 20 10

2.5 Tracking by department 4 0] b
and sub-department

2.6 Multi-account and 4 0 16 8
depariment posting
in one voucher

2.7 Budget Comparison 3 0 0 &
and Vanance Analysis

2.8 | Cost Allocation across 3 0 0 &
deparnments

29 Flexible reports mcluding 5 10 10 10
B/S and P/L

2.10| Whatis Analysis 2 0 4 4

) Svstem Design Concept
No | Deseription Weightage | Optionl | Option2 Option3
pi2.11] Multi-location and 3 0 0 6
department consolidation
) 2.12| Receivables management 4 8 0 8

including aging
2.13] Payables management 4 8 0 8
and printing of cheques
3. Recovery

31 Ability to recover data 4 0 0 8
32 Recovery Techmique- 3 0 0 6
Environmental Software
or Application Software

3.3 Reconcilianon and 3 0 6 8
rebuild uulities
4. Support

4.1 Training to Users 20 20 10

L

E-mail Support
4.3 Mew Releases 4] & 8
5. Miscellancous items
5.1 Warranty Period
52 Price

5.3.| Trial penod

3 12 12 12
3 6 6 12
2 4 4 4

Total 88 132 186 188

From the above it is apparent that Option 2 and Option 3 are very close
contenders, They must be evaluated closely from a cost-benefit angle before a final
decision is taken but option | does not seem to be a good option at all _ll must be
' noted the option 2 and option 3 work out to 53 percent {186/88%4) or 54 percent

(188/88*4) of requirements. Thus both these options will also involve a fair amount
’ of work before they can fully live up to expectations. But you are now surc that you
" have chosen the best possible altemnative through an objective technique.

. 2.5. Sizing and Effort Estimation : . . _

The assumption at this stage is you have u:rmdl in one of the options rh.; next
step is to size the work and then estimate the effort. It is important that these activities
are done in proper sequence sizing first and then ::ﬂ'onkcsllmnnon. Th‘:. most common

’ mistake is to go in the reverse order. The accuracy of a software project estimate is
’ predicted on a number of things:

b
[
]
[
®
®
®
@42 | Telephone and 5 10 10]
®
®
®
9
®

13

Software Project Planing 241

= the degree to which the planner has properly estimated the size of the product
to be built

e the ability to translate the size estimate into human effort, calendar time and
dollars (a function of the availability of reliable software metrics form past projects)

e the degree to which the project plan reflects the abilitics of the software
tecam, and

e the stability of product requirements and the envirorment that supports the
software enginecring effort.

In the context of project planning, size refers to a quantifiable outcome of the
software project. [fa direct approach is taken, size can be measured in lines of code
{LOC). If an indirect approach is chosen, size 15 represented as function peint (FP).

Sizing 15 estmating the dimensions of scope of work in terms of deliverables-
it could be in terms of function points or lines of code or anv other unit of measure
which is vsed by the organization for dimensioning software projects. This size is
then converted into effort using preductivity norms like number of function points
or lines of code produced per dayv. A number of standard procedures used by software
engingers for sizing and effort estimation are given below. You will then have to
choose the method that is best suited for vour environment

A very good technique used by many organizations to cnsure that estimation is
done properly is to usz a Delphi technique. You ask a set of experts (sav 3) to
estimate the effort by a methodology of their choice. The estimates for the project
could be quite different depending upon the different assumptions made by the
estimator. After all the estimatcs have been rationalized so that we can compare
now, ignore the two extreme estimates the least and the highest and wke an average
of the middle three to arrive at the final estimate for the project. This technique 1s
particularly useful as there is no surc-shot method of estimation for a software
project and this method has the averaging effect of many software professionals
and is considered a useful exercise by many organizations, specially when they are
bidding mega proposals.

2.5.1. Program Complexity Method :

Under this method, the primary assumption is that cnough details of
requirements are available to make a list of programs required for development of
the system. If this information ecannot be estimated from the requirements, this
estimation methodology will not work, The list of programs arc then classificd into
3 to 5 categories as Very Complex, Complex, Medium Complex, Simple and Very
Simple. There can be guidelines for classifving the programs into various categories.
Typical guidelines could be:

e Any program which updates the database must be classified as Complex or
Very Complex

& Any program which has a large number of calculations must be classed as
Very Complex

242 System Design Concept

o Any program which only involves retrieval of data must be classified as
Simple or Very Simple

e Any program which involves communication with customer or regulatory
interface must have a minimum of Mt;chum Complexity

Bascd on some guidelines as stated above, programs must be classified into
categories. If we attach a weightage to cach classification, we can arrive at a numdric
value of the complexity of the system. In other words, we have sized the complexity
of the system. Let us see how this works with an example. Let us assume that you
are trying to develop a Financial Accounting package with basic functionality. The
complexity of the system could be calculated as shown below.

\ List of programs Very Complex | Medium | Simple| Very
Complex Simple

Maintcnance programs 5 3
Processing programs 5 2
Batch programs 3
Reports 4 5 10
Queries 5 12

\ Security 2 3 4

| Total | s 10 1 13 26

If vou give a 5-4-3-2-1 weightage for the above categorics the total complexity
of the svstem works out to

§x5+10x4+ 11 x3+13x2+26x1-: 145 complexity points.

The number given in each row are the number of programs in cach category
for that module. If systems are evaluated across common guidelines, the complexity
points could be used to compare systems for complexity and thus appropriate
manpower can be assigned for the project. It must be noted that we have just
completed the sizing of the project. The number of person-days for completing the

 programs (coding and unit testing only) under cach category nced not be in the

ratio of 1 :2:3-4:5. This will depend on the skills of the people in the orgamzation.
the maturity level of the organization and a number of other subjective factors. Let
us for this exercise that the number of person days to complete coding and unit
testing for programs is as given below:

Very Complex 20 Person days
Complex 13 Person days
Medium 8 Person days
Simple 5 Person days
Very Simple 3 Person days

Using the above assumptions, the total cffort for the project works out as shown
below :

14

Software Project Planing

243

List of programs Very Complex | Medium| Simple Very
Complex Simple

Maintenance programs 63 24
Processing programs 100 39 16
Batch programs &0 26
Reports 32 25 - 30
Queries 25 36
Security 16 16 12
Total 160 130 88 65 78

Thus the total effort for the project works out as given below:
160 + 130 + 88 + 65 + 78 = 521 person days.

This translates into 24 person month or 2 person year project assuming that
there are 22 working davs in a month. The effort which is calculated above only
relates to coding and unit testing phase of the project when the team will have it's
peak size. We now need to calculate the effort for the other phases of the project.

Typically, a project following the waterfall life cycle model goes through the
following phases:

— Initiation

Analysis

— Design

Coding and Unit testing
Svstem Integrated testing

— User Acceptance testing

— Implementation

Post Implementation Support
— Project Management
Documentation

The effort for the above phases can be calculated as a percentage of the effort
estimated for coding and unit testing as shown below.

Stages of Project Percentage of Coding | Percentage of Project
Initiation 16.7 3
Analysis 50 15
Design 50 15
Coding and Unit Testing 100 30
Svstem Integrated Testing 333 10
User Acceptance Testing 333 10
Implementation 16.7 5
Project Management 16.7 5
Documentation 16.7 5
Total 100

244 System Design Concept

Based on the above table the total effort estimate for the entire project will
work out as shown below.

Stages of Project Percentage of Coding| Percentage of Project
Initiation 16.7 87
Analysis 30 260
Design 50 260
Coding and Unit Testing 100 521
System Integrated Testing 333 174
User Acceptance Testing 333 174
Implementation 16.7 &7
Project Management 16.7 87
Documentation 16.7 : 87
Total 1737

As you can see the total effort for the project suddenly balloons up by about
200 percent 1o become a 79 person month or 6.5 person vear project. The percentage
used for the estmation are guidelines and should be fine mned based on the ground
realitics of the project. If personnel who are going to do the analvsis are familiar
with the application. then the time taken for analysis will be much lesser. If the
requirement is an enhancement 1o an existing system, the design uffm?t may take
lesser or more effort depending on the quality of the design of the existing system.
After making the adjustment for ground realities, it is normal to prov:dc. a t_:uffcr for
items which were missed out or to provide for contingencies. The best ind icator far
contingency provision is the history or track record of ?rg.mzalion. If the projects
executed over the last 2 vears have shown an average dew:_mmofﬂ percent between
estimated ¢ffort and actual effort, then a 23 percent contingency provision must be
provided. It must be noted that the contingeney provision could also bring down
the effort estimate if we find that all projects over the last two years have been
showing a positive deviation between planned effort and actual c'!'f‘aﬂ.. _

Once the above exercise is completed, we can state that the estimation exercise
is complete.

ines-of-code Method :

2.5.2_.]‘::‘:::;::3-0{{0& method for estimation is_ an a.dap‘I:aI_iOI: of the ng.ram
Complexity method. The methodology followed is very similar to u:rc tcclluluquc
given under Program Complexity method. This steps involved are as follows:

o Estimate the number of lines of code for each program

e Compute system size by adding the number of lines of code across all

progrms

15

Software Project Planing
e Convert lines of codes to effort using productivity figures
e Evaluate effort for other stages of project
® Make final adjustments to estimate

The above steps arc explained with the same example described under Program
Complexity method. A common way 1o estimate the lines of code is to calculate the
expected value using the following formula:

Expocted Line of Code = 3--4m.tb

245

where a = Optimistic lines of code
m = Most likelv lines of code
b = Pessimistic lines of code
Thus if we estimate a program will have 1800 line optimistically, most likely
as 2400 and pessimistic as 2650, then the expected lines of code for the program

will work out to be
1800 + 4 x 2400 + 2650 = 2340
4]

We must calculate the expected lines of code for every program in the system
and build a table as shown below. It must be cmphasized here that the person
estimating the optimistic, most likely and pessimistic lines of code must be a very
experienced person with good knowledge of the application and the proposed
environment on which the system is to be developed. It is this input which ultimately
leads to the total effort for the project,

Once the lines of code for all programs have been estimated as stated abaove,
the size of the project can be computed as shown below.

List of programs Lines of Code
Mamtenance programs 9.120
Processing programs 15,200
Batch programs 7.200
Reports 8,620
Queries 5,080

- Security 5,300
Total 50,520

The size of the project has been estimated at 50,520 lines of code. The lines of
code given in the above table are the expected lines of code calculated for each
module as described above. Once the size has been estimated, this can be tracked
by the organization. Let us assume that based on the data of projects for the last two
years, it has been found that on an average 100 lines of unit tested code are produced

246

System Design Concepy

every working day across all tvpes of programs (very complex to very simple) on
the target environment for this project. If organizational figures are not avaiiable,
industry figures on such statistics can be used for estimation. This average productiviry
figure will also take into consideration that some programmers are more productive
than others. If this productivity figure is applied to the table above, we will get the
effort estimate for coding and unit testing phase of the project as given below:

List of programs Lines of Code Effort
Maintenance programs 9,120 91
Processing programs 15,200 152
Batch programs 7,200 72
Reports 8,620 26
Queries 5,080 31
Security 5,300 53
| Total 50,520 50

The total effort for coding and “unit testing works out to 505 person days. The
effort for the other phases of the project are estimated using the percentages as
described under Program Compiexity method, If the same percentages arc used,
the total effort for the project will be as shown below.

Stages of Project Percentage of Coding Efforts in
and Unit Testing Person Days
Initiation 16.7 84
Analysis 50 253
Design 50 253
Coding and Umit Testing 100 305
Svstem Integrated Testing 333 168
User Acceptance Testing 333 168
Implementation 16.7 R
Project Management 16.7 84
Documentation 16.7 84
Total 1683
After

cffort depending on the quality of the design of the existing system.
making the adjustment for ground realitics, | p o
items which were missed out or to provide for contingencics. The best ir
contingency provision is the history or track reco Org
exeented over the last 2 vears have shown an average deviats

16

it is normal to provide a buffer for
wdicator for
rd of oreanization. If the projects
on of 23 percent between

Software Project Planing 247

estimated effort and actual effort, then a 23 percent contingency provision must be
pl’O'\-"'ldlbd- It f_TIUSl be noted that the contingency provision could also bring down
the ci_:ﬁ:irl estimate if we find that all projects over the last two years have been
showing a positive deviation between planned cffort and actual effort.

Once the above exercise is completed, we can state that the estimation cxercise
is complete.

2.5.3. COCOMO Model :

Barry Bochm introduced a hierarchy of software estimation models bearing
the name COCOMO, for Constructive Cost Model Boehm’s hierarchy of models
takes the following form:

Model 1 : Basic COCOMO is a static single-valued model that computes
software development effort (and cost) as a function of program size expressed in
the estimated lines of code.

Model 2 : Intermediate COCOMO computes software development effort as
a function of program size and a set of “cost drivers”™ that irclude subjective
assessments of product, hardware, personnel and project attributes,

Model 3 : Advanced COCOMO incorporates all characteristics of the
intermediate version with an asscssment of the cost driver’s impact on cach step
{analysis, design, etc.) of the software engincering process.

To illustrate COCOMO, we present an overview of the basic and intermediate
versions, COCOMO mayv be applied to three classes of software projects as given
below :

e Organic mode - relatively small, simple software projects in which small
eams with good application experience work to a set of less than rigid requirements
(e.g. thermal analvsis program developed for a heat transfer group)

e Semi-detached mode - an intermediate (in size and complexity) software

project in which teams with mixed experience levels must meet a mix of rigid and

less than rigid requirements (e.g. a transaction processing system with fixed

requirements for terminal hardware and database software)

e Embedded mode - a software project that must be developed within a sct of

ttght hardware, software ad operational constraints (c.g. flight control software for

sireraft)

15.4. Basic COCOMO :

The basic COCOMO cquations take the form:

E = Ab(KLOC) exp (Bb)

D = Cb(E) exp (Db)

Where E is the effort applied in person-months, D is the development time in
dronological months (clapsed time), and KLOC is the estimated number of delivered
ines of code for the project (expressed in thousands). The coefficient Ab and Cb
g the exponents Bb and Db are given in table below.

248 System Design Coneept

Software Project Planing

Software Project Ab Bb Chb Db
Orgamc 2.4 1.05 25 0.38
Semdetached 3.0 112 25 0.35
Embedded 3.6 1.20 25 032

The basic model is expanded to consider
can be grouped inte four major categories:
s Product attributes
Required software reliability
Size of application database
Complexity of the product
e Hardware attributes
Run-time performance constraints
Memory constraints
Volatility of the virtual machine envircnment
Required tumaround time

a set of “cost driver attributes™ that

® Personnel attributes

Analyst capability

Software engineer capability

Applications experience

Virtual machine experience

Programming language experience
- Project attributes

Use of software tools

Application of software engineering methods

Required development schedule

Each of the 15 anributes listed above is rated on a 6-point scale that ranges
from “very low™ to “extra high” (in impcl’l’.&nc\cl' or value). Based on th‘c rz::ing. anf
effort mui-lipliur 15 determined from tables publmhed by Buclgn ;nd the product o
all effort multipliers results is an effort Adjustment Factor (EAF).

Intermediate COCOMO :
2.515':[11-:: ?ntcn'ncdialu COCOMO equation takes the form:
E = Ai(LOC) exp (Bi) x EAF .
ere E i s ¢ applied in person-months and LOC is the estimat

numb\;h(:;;c]; Vl‘;::‘;';-go;_ml;i for the project. The cocfficient Ai and the exponent
Bi arc given in table below.

Software Project Ai Bi
phsalle’s 32 105
Semidetached 3.0 i
Embedded 28 1.20

17

249
COCOMO represents a comprehensive empirieal model for softwa

Today, a software cast estimation model is doing well
development costs within 20% of the actual costs, 70%,

is, within the class of projects to which it has been calibrated)... This is nat
as precise as we might like, but it is accurate enough to provide a good deal of help
in software enginecring cconomic anal vsis and decision making.

To illustrate the use of COCO
software. Using the figures from the
get
E =30(LOC)exp(1.12)

=3.0(333)1.12
152 person-months

. re estimation.
if it can estimate software
of the time, and on its own

MO, we apply the basic model o the CAD
first table, we use the semidetached model to

To computs recommended
above,
D =25 (E)exp (0.35)
=2.5(152)035
= 14.5 months

The value for project duration enables the planner to determine a recommended
number of people, N, for the project.
N =ED

= |52/14.5

= 1i people

project duration, we use the effort estimiate described

In reality, the planner may decide to

use only four people and extend the project
duration accordingly.

2.6. Project Cost Estimates

You have so far estimated the effort in terms of person davs for doing the
project. This forms only one component of the total project. Let us now see how to
estimate the total project cost A typical software project comprises of the follow ing
expense heads :

2.6.1. Manpower Cost

The total manpower cffort for the project would have been finalized using one
of the technique described earlier. For estimating manpower costs, it is normal
practice to categonize the manpower into three to five categories and assoeiate a
monthly rate for each category. The rate should only include costs directly paid
towards salanies, subcontracting fees and related perquisites.

2.6.2. Hardware Cost
Hardware cost will also have to be computed on a unit costing basis. Let us
take a tvpical project which uses personal computer as front-end workstations and

250 System Design Concept

a Unix server at the backend. It is possible that the ~nix server is shared across
many projects. The organization must work out unit costs for a month for each
hardware item which can be utilized for a project. There could be a cost of Rs 3,000
per month for use of PC as a workstation. There could be a monthly unit cost for
cvery MB of disk space used on the Unix server. If the system connects to external
networks there could be a unit rate for dedicated ports or rate per hour of usage for
shared ports. These rates must typically cover, depreciation costs, funding costs,
insurance and annual maintenance charges. The challenge at this moment of time is
to estimatc the hardware and data communication equipment requirements for the
praject. These are relatively easy to determine once the total effort, team size and
data volumes are known, The exact estimation technique may vary from machine
to maching but the estimation is just as arithmetic of requirements and equipment
required o meet the requirement. You cannot prescribe ene formula for this
calculation as it varics from environment to cavironment,

2.6.3. Software Cost :

Software cost are normally assigned on number of licenses or number of users
using one license of the software. Again these are easy to determine once the
environmental software is decided and the project team organization is finalized.
The orzanization must have worked out a unit cost for every license of the software
on a monthly basis. The unit cost of software normally includes depreciation, funding
costs and annual maintenance charges.

2.6.4. Travel Cost :

Travel cost must be estimated based on the requirements for travel for the
project. Typically, this eould include costs of travel for review mectings, requirements
specifications and clarifications, implementations ¢tc. This must be done based on
best available data at this stage. .

2.6.5. Traning Cost :

Training costs will include the cost of application, technical and general training
which the project team members will have to underizo before they start working on
the project. It could also include costs relating to travel for training, faculty charges
and premises/equipment charges for training. This again has to be estimated based
on the best available information,

. 2.6.6. Administration Cost : ;

Administration costs typically include charges relating to premisces, utilities,
communication and conveyance costs. It could also involve the costs of corporate
overheads. These costs are normally worked out in most organizations on a per seat
cost and the project is charged on the number of seats occupied it. These cost wall
have to be worked out based on the organizations policies for allocation of various
costs,

18

Software Project Planing
3. Risk Analysis :

Software projects have a number of risks associated with them.

3.1 Manpower Risk :

This relates to rate of people leaving the project when the project is still in the
dcvclppmcnl stage. This can cause substantial delays as new people may have to be
_recruited and trained which should lead to redoing some work as the incoming
person may want to start things afresh rather than takeover the previous persons
work and continue from there. The impact on the project is more severe if one of
the senior members of the project suddenly leaves the project as the new person
might want to make changes with higher impact on schedules and deliverables.

This risk can be addressed by either having a strong process driven organization
or overstaffing the project to cater to such contingencics. An organization cannot
be converted into a process driven organization overnight. It will have to be a long
term strategy of the organization. A process driven organization will not feel the
impact of the change in personnel as processes, by their very definition are supposed
to be people independent. Thus, changes in personnel can be handled without major
impact in organization with strong processes. In the field of software, there are very
few organizations with such a degree of process orientation. :

Another way of addressing the risk in a more common way is overstaffing
This will have cost impact but the impact on schedules may be prudent ta have a
backup person for critical positions so that change in personnel is eased out. For
development personnel, it might suffice to have a pool of peopie who might be
assigned to a low priority project and can be pulied into the critical project at short
notice. This will help reduce costs as the pool zould be common across many projects.

Each of the above risk ease technique has it’s own pros and cons. The
organization has to decide on the best route depending upon the eriticality of the
project and constraints of the organization.

3.2. Technology Risk :

Technology in today’s world is becoming extremely complicated as what was
the ‘in’ thing yesterday is the ‘out’ thing tomorrow. The shelf life of various
technologies is between six months to two vears in a rapidly changing world, There
are two kinds of nisks related to technology - using New technology and using
Outdated technology. Both have their own set of risks.

If vou are using new technology, the major risks are availability of manpower
with skills in that area and stability of the product itself. These can be countered
with effective training and a good acceptance test on the product but mere classroom
training may not be sufficient for a person to program effectively using new tool. In
such cases, a buffer period for people to play around with the tool and try out it’s

features, develop standards for using the tolls must be provided in the project
schedule.

Do
System: Design Coneepy
1S manpower retention as people

If vou are using an ouidated tool, the risk
alw ays want to Iwarl-: on the latest technology. They would like to move 1
' orgamzations which are using the latest technology. This risk has to be addresseg

as described under manpower risk and a clear directive of the organization’s play
to move to the latest version of the tool. :

‘ Another rglalud risk is that the project starts on the latest technology but by the
cnd_of the project a new version of technology has come into the mal:ket and the
project is implemented with obsolete technology. The best decision under the
circumstances 1s to go ahead and implement the software with the older version of
the tools. After successful implementation and stabilization of tke product, a new
Project can be initiated to convert the software from the older version to the current

‘ VEersion.

3.3. Customer/User Risk :

A software project is a Joint exercise between customers and the software
‘ project team. A project is completed successfully if both work in svnergy
understanding the goals and working as a team. However, if there is a wall in between
‘ the two and lack of communication. the project may never see it’s ead. It has been
observed that synergy between customers and software teams is higher where
customers are compuier literate than with customers who are absolutely new to
computer systems. Customers who are computer literate understand the importance
‘ of specifying requirements upfront, implications of making changes during the course
of the project and the improvement in quality of deliverables by testing the system
with a structured test plan.
If customer’s knowledge of software development is below acceptable level,
- it is imperative that they are trained on the software development life eyvele. computer
fundamentals and made aware of the various issues relating to software development
This will easc the nisk to some extent,
‘ 3.4. Environment Risk :
This relates to risk depending on the location of the project. There are some
,munlrics where power supply is erratic. If a soﬂwarc project is being done in such
a country, the risk has to be addressed by having appropriate [IJF'S Or generators
‘ Government policies and rules made by rcgulatorls relating to imports, L‘m:s a:nd
visas could have impact on software projects. The list of these risks can go endless 3‘:
"I‘hc kev point to be noted is addressing such risk !s_w make sure that the pro_Jr.'l:
manag wer is aware of them and the action l? be taken in case of'l:w;.::nt:l:ccumn.g;
It is 1;n9055il?lc to plan for all these risks. Some of them are totally beyvond anyone

control
4. Project Planning :

After the cost has been approve
of the project is prepanng the Project

::,r:l for the project, the first step in the excoution
Plan. Project planning involves all aspeets

<

19

«the effort required for each activity.
- -activities;

Software Project Planing

253
relating to the project. It is a document which can be used as a reference to know
how various activities are to be done, when they are to be done, their dependencies,

Typically Project Planning involves the following

= Methodology

» Risk

® Quality Plan

» Configuration Management Plan

= Project Schedule

® Resource Plan
4.1 Methodology :

A methodology is nothing but a series of steps which need to be carried out to
méet an end goal. In software development, there are number of methodologies
‘which can be followed for development of a software product. Each of these
methodologics have different variations and each has their own pros and cons. The
most popular methodologies used for software development are:

e Waterfall Model

L] Prolot}'pmg

= Rapid Application Development

We have already discussed this methodologies in the prior sections. The
‘methodology selected for the project and the various key steps or milestones in the
methodology must be described in the Project Pian.

4.2, Risk :

The tvpical risks associated with a project have already been explained carlier.
In the Project Plan document, the risk associated with the project must be dcscr?bq:l
and the steps taken to case the risk must also be detailed. The risk nl1ust bc dm:nbad
from a technology and busincss perspective. The objective O.f this section is that
management 15 kept aware of the risks and it’s consequences in the project.

4.3 Quality Plan : .

A Quality Plan describes the various checks that will be done to improve the
quality of deliverables. Typically this will contain the following details:

Process for reviewing deliverables

= Testing process

® Walkthroughs

Process Audits

o Adhcrence to Standards
4.4, Configuration Management Plan: st

Configuration Management involves maintaining control on the versions o
software. Typically, this will involve:

Svstem .-[}t::iign Concepy

Identification of Configuration ltems
o Checking In-Out process

® Version Control of Software

o Reporting and Analysis

4.5. Project Scheduling :)

The task of scheduling the project is the most difficult and important part of
the Project Plan. It is an extremely complex task as you are dealing with vaﬁogs
things which are probabilistic in nature. A list of activitics or tasks is made for the
project- these mayv expand or contract depending on changes which oceur after the
project has commenced. Allocation of responsibility to personnel is done for
completing the activities without knowledge whether the people will stay till the
end of the project and start dates and end dates are also assigned based on estimation
and resources allocated to the activity, which again is highly probabilistic. One of
the questions which mayv be asked at this stage is why have a project schedule when
we are not certain of amvthing in the project schedule? The reason is that you want
to know how vou are doing at a given instant against the overall objective. A Project
Schedule can thus be viewed as a road map to completing the project on schedule.
A project schedule which is not being tracked is as useless as a car without a steering
wheel. You know what all you have to do to get to the final destination but are
unable to take corrective actions when you encounter roadblocks. Thus it is important
not only to have a project schedule but also track against the schedule so that timely
corrective acilons can be taken.

Project Schedule comprises of the following steps:

o Identification of Activities

& Allocation of Responsibilitics

* Scheduling of Activities

o [dentifving Milestones

& Pictorial descriptions

e The Critical Path’

4.5.1, Identification of Activities :

This step involves identifying the various steps or tasks to be performed in the
project. The list of activities can be drawn up at an intermediate level. The important
point is that the list of activities must be comprehensive so that no activity is missed
out. It must act as a checklist to cnsure that all tasks are completed before we say
that the project is complete. Project Manager normally have a tendeney to say that
the project is complete as soon as testing has started - a list of activitics with proper
tracking will ensure that the management gets a clearcr picture of the status.

The level of detail of activities for a project is important. It is ideal if the level of
planning 1s done at the lowest level as shown next page :

20

somwarc rroject Planing

255
Activities Depend- | Effort Resources| Plant | Plan
encies Start End
8 Date Date

Project Initiation

User Request

User Request Review

Feasibility Study

Estimation

Approval of Estimates

Risk Analysis

Planning and Tracking

Initial Plan

Tracking and Review

Revision of Plan

Life Cvcle Activities

Functional Specifications

Module 1 to Module

Review of FS

Design Specifications

e

Module | to Module n

| [Review of Design

Development

Program Specifications

Program 1 to Program n

Revicw of Specs

—

Unit Test Plans

256

Svystem Design Concept

Activities

Depend-
encies

Effart

Resources | Plant | Plan
Start End
Date Diate

Ekogmn | to Program n

eview of UTPs

4

H

ing

Program | to Program n

Review of Code

Software Project Planing

257
Activities Depend- | Effort | Resources| Plant Plan
encies Start End

; Date | Date
‘Transfer to Production
Conversion
Parallel Run
Live Operations

Post Implement Support

Unit Testing

Program | to Program n

+LL

System Test Plan

Module 1 to Module n

Review

User Acceptance Plan

Module 1 to Modulen

Review

Documentation

Module | to Module n

Review

In the above project schedule, we have identified activitics upto lowest level of
detail - modules for Functional Specification and programs for Development. While
this is the ideal plan, it might not be the most practical. You must be able to track
activities at the identificd level of detail. This becomes moré and more complex as
the number of activitics become large. Imagine a situation where a system had 5
modules with an average of 50 programs in each module - vou will have more than
1000 activities in your project plan. Tracking at that level of detail can be an
extremely complex exercise. Tracking at that level of detail without a sophisticated
project management tool will be a futile exercise. The idea 1s to have detailed level
planning with summary consclidation for management reporting. If tracking at a
detail leve! is not feasible, then it is better to plan the project at summary activities

and not at detail icvel. A typical project planned at summary level will look as
shown below.

Activities Depend- | Effort | Resources| Plant | Plan
encies Start End
Date Date

Project Initiation

Svstem Testing

User Request

User Acceptance Testing

User Request Review

Packaging and Release

Implementation

Planning

Testing Conversion

Freczing data

Database Definmition

AR AR R LR R RN RPN Y

21

Feasibility Study

Estimation

Approval of Estimates
Risk Analvsis

Planning and Tracking

Initial Plan

Tracking and Review

L s = e

System Désign Concept
258 =
T Depend- | Effort |Resources| Plant | Plan
el encies Start | End
Date | Date

Revision of Plan

Life Cyele Activities
Functional Specifications
Design Spcciﬁcations

Development
Unit Test Plans
Coding

Unit Testing
System Test Plan
]acr Acceptance Plan

Documentation

System Testing
User Acceptance Testing
Packaging and Release

Implementation

Planning

Testing Conversion

Freezing data

Databage Definition

Transfer 10 Production

Conversion
Parallel Run

Live Operations

Post Implement Support

As vou can sec from the above table, the module Ell.nd program level d-.'m_ils are
femo\"!}d'fmm the schedule, There can be an intermediate level where planning for
some items is done at module level and some at a summary of progm.m level. The
main criteria for deciding the level of detail of activitics rs the ability to track

22

Software Project Planing 259

progress at the microscopic level. Planning without tracking is like designing a car
without steering wheel - it will move but you do not know where vou fire going nor
are vou able o control it. :

Another factor which is important in deciding the level of activities for a project
is dependencies. A project comprises of a number of activities or tasks. These tasks
could be independent tasks or dependent tasks. Independent tasks are those tasks
which cap start at any instant in the life eycle Irrespective of the status of other
activities - User Acceptance Test cannot start unless System Test is Completed or
Development cannot start till Design is completed. Activities must be identified
such hat dependent activities are clearly defined as discrete activities and the
dependencies are also stated explicitly. There mayv be many dependencies for an
activity. It is not important to identify all dependencies, it is more critical to identify
the important dependencies which have an impact on the delivery date, it must be
identified and stated explicitly, Dependencics could be of four types:
® Start-Start :

Activity | and Activity 2 must start together. A good example for this type of
activity in the software life cyele in program specifications and Unit Test Plans - it
is best if both these activities are started together in parsllel. This kind of relationship
can be diagrammatically represented as shown below.
® Start-Close :

— |
f =1

In a Start-close relationship, Activity 1 must start before Activity 2 is closed.
Typical example of this activity in a software life eyele User Documentation must

start before document is completed. This type of relationship is diagrammatically
represented as shown below. :

® Close-Start :

- Svstem Desien Coneept
Activity 2 can start only after Activity 1 is closed. This is thc.
dency as it has the maximum impact on o '
2 relationship is that User Acceptance
cted. This type of relationship represe
pse-Close :

most critical
nd delivery date. An example of
Test can only start after System Test is
nted diagrammatically as shown below,

—

this type of relationship. the two activities must end simultancously or together.
Pical example of this tvpe of relationship is the completion of User documentation
aghccepiance Test. The User documentation is reviewed during Acceptance test
us both these activities have to end together,

1s important to identify the key relationships which impact the end delivery
ate and not every minute dependency just to make the planning complicated. g
Based on the effort estimation done for the project, the effort must be
pagtioned to each and every activity. The effort for each activity will depend cn
anplexity of the work, the knowledge level and familiarity of the people working
e activitics and uncertainties (like unclear specifications) associated with the
ty. It must be noted that the sum total of the effort for all the activities must be
to the total estimate done for the project. If there is a deviation of more than
0 percent, there must be a review of the apportionment of the estimate to each
il |f i1 is found to be OK, then approval of estimates for the revised estimate
wst be obtained from the sponsors of the project.
he Project Schedule chan which has been built so far will appear as shown
elow. It must be noted that we are using the summarized version of table for further
e sions keeping simplicity in mind.

pities Depend- | Effort | Resources

encies

Plant
Start
Date

Plan
End
Date

Project Imitiation

User Reguest 1

User Request I
Review

Feasibility Study 5

Estimation 3

23

Software Project Planing

261
Activities Depend- | Effort |Resources] Plant | Plan
’ encies Start | End
Date Date
1.5 Approval of 3
Estimates
1.6 Risk Analysis 2
2. Planning and
Tracking
2.1 Imtial Plan 1.5, 3
Close-Start
22 Tracking & Review 20
2.3 Rewision of Plan 10
3. Life Cycle
Activities
3.1 Functional 50
Specifications
3.2 Design 50
Specifications
3.3 Development 3132
Close-Start
33,1 Program 40
Specifications
3.3.2 Unit Test Plans 40
3.3.3 Coding 60
3.3.4 Unit Testing 60
3.4 System Test Plan 30
3.5 User Acceptance 30
Plan
3.6 Documentation 38,
Closc-Close 30
3.7 Svstem Testing 34,
Close-Start| 45
38 User Acceptance 31537
Testing Close-Start| 30

=

262 - System Design Concept

Activities Depend- | Effort |Resources| Plant | Plan
encies Start End
Date | Date
39 Packaging and 10
Release
4. Implementation
4.1 Planning 5
4.2 Testing Conversion 30
4.3 Freezing data 2 .
4.4 Database Definition| 5
4.5 Transfer to 39, 3
Production Close-Start
46 Conversion 10
4.7 Parallel Run 20
4% Live Operations 1
49 Post linplement o0
Support

4.5.2. Allocation of Responsibilities :

After identifving all the activities for the project, apportioning the effort and
locating dependencies, the nexi step in Project Scheduling is allocation of various
activities to people. This is very important task and if it is not done properly, it
could break an otherwise successful project. People are the comerstone or the most
vital assets of a project team. If they are given responsibilities which are not in line
with their skills, we could casily end up with a square peg in a round hole. It s not
always possible to find a perfeet resource for cach and every activity. It is however
imperative that the best of available resourees is put for the most approprate task.
If somebody has good testing skills and application knowledge, the person must be
put on writing Functional Specifications and Test Plans and not on design and
program specifications. It is also possible that there may be a gap between skills
required for an activity and possessed by an individual. In such a case, it mu_st_lx:
judged if the person can pick up the required skills quickly. An altccelemled training
program for the skill gap is a must for the success of the project. If a person is
managing a team for the first time, the person may not be aware of Project
Management requirements and activities. In such a case, the person must be trained,
close supervision in the carly stages will help the person adjust to the new plc
quickly. People are gencrally reluctant to admit that they do not possess some skills,
It is for the management to understand these deficiencics and take the required

24

Software Project Planing 263

corrective action. The work experience of an individual and appraisal records should
give enough information on the skill level of an individual. The problem faced by
most organization is that the do not have an organized skills inventory and thus
selection of the right individual for the job becomes more of potluck than a structured
exercise. Apart from skills inventory, the organization must also have the details of
the current assignment and the time when the person will be available for the next
assignment. A resource calendar is thus required for allocating people to various-
activities.

Another key aspect of skill building is timing. There is no point in building skills
afier the event, If a person is gong to do programming in C for the first time, the
person must be tramed on C language and it’s associated programming standards
before writing the first program. If it is done after the person has written a few
programs, then the person may have to “unlearn” and ‘relearn” which is much more
difficult than just leaming. This is a very common mistake made by most people -
putting people on the jobs without the proper training and then realizing the mistake
half way through. This is because most people think that the person will pick up
skills on the job. In reality, onge the person is on-the-job, the regular dayv-to-day
activitics drown an individual and the person keeps doing rather than lcaming,

We have discussce so far the resource allocation criteria and training
requirements. While these are critical from the overall project deliverables, the one
aspect where the senior management must put a lot of thought is the selection of the
Project Manager. 1.1 the Project Manager is selected through objective selection
criteria, then the person will make up for the weakness in many other individuals of
the team. If the Project Manager possesses all the skills, then the person will
automatically realize the importance of planning, training, reviews etc. and
implement them in a timely manner. '

Another factor which must be considered during resource allocation is Resource
leveling. In many organizaiions, people work across many projects or have some
corporate responsibilities. In such cases, consideration must be given to see that
there is no overicading of a resource. If resources are overloaded on a continuous
basis. it results in breakdown of an individual - ths results in poor quality of outputs
or poor productivity and ultimately in poor morale. [t also leads to a high degree of
attrition in an organization. If a particular person is getting overloaded, then some
work load must be reassigned to another person. This is known as resource leveling
whereby we ensure that all resources arc used to the optimum level and not
overloaded.

Software organizations have a high degree of volatility in their manpower.
Software peoplz are a very mobile community. It is therefore important that backup
resources are provided for eritical positions in the project team. 1t is not feasible and
practical to provide a backup resource for every person in the project team. However,
critical persons like Project Manager, Database Administrator ¢tc. must have a
backup so that work does not get disrupted in case of a change in person. For other

!h-l

.-ctaplc in the team, organizations normally maintain a software pool for replenishment
n case of major attrition in a project. ’

Swstem Design Concept

The final action in Resource Allocation must be to communicate the Roles and
Wresponsibil itics of an individual in the project lack of communication has been identified
as one of the most common causes of failure. Roles, Responsibilities, Goals and
W@.ppraisal critena must be communicated clearly at the time of assignment of a
~ person to a praject. 1fthis is not done, it leads to the common Everybody-Somebody-
P iobody syndrome-Evervbody thinks somebody will do the job. Evgnlually nobody
ends up doing it. The Project Schedule table given above must be C|mu!atcd to one
‘.nd all so that evervbody knows who is responsible for what in the project.

After allocation of responsibilities, the table will look as shown below.

Software Project Planing

Activities Depend- | Effort |{Resources| Plant Plan
- encies Start End
Date | Date
1? Project lnitiation ‘
d‘._.l User Request 1
. 'r}z User Request 1
Review
m@| | 5 Feasibility Study 5
* 1.4 Esumation ;|
1.5 Approval of 3
=2 Estimates
mil| 16 Risk Analysis 1.5 2 PM
2. Planning and
4 Tracking
4 2.1 Initial Plan 1.5, 5
Close-Start
4 PM, TL
22 Tracking and 20 b
- Review
PM
' 23 Revision of Plan 10
3. Life Cycle
4 Activities —
G PM, TL,
3.1 Functional 5 e
ﬂ Specifications

25

265
Activities Depend- TEffort [Resources| Plant | Plan
encies Start | End
Date | Date
3.2 Design 50 PM. TL
Specifications Reviwers
33 Development 31,32
Close-Start 3
3.3.1 Program 40 Developers
Specifications £
3.3.2 Unit Test Plans 40 Developers
3.3.3 Coding 60 Developers
1.3.4 Unit Testing 60 Developers
34 System Test Plan 30 PM. TL
3.5 User Acceptance 30 Users
Plan
3.6 Docvmentation 3%, 30 PM
Close-Close Technical
Writer
3.7 Sysiem Testing 34, 45 PM, TL,
Close-Start Developers
38 User Acceptance 3537 30 User, PM
Testing Close-Start TL,
Developers
39 Packaging and 10 PM,TL
Release
4. Implementation
4.1 Planning 5 PM, Users
4.2 Testing Conversion 30 PM, Users
4.3 Freezing data 3 Users, PM
4.4 Database Definition) 3 PM, DBA
4.5 Transfer to | PM,
Production Librarian
4.6 Conversion 10 PM,
Users, TL

266 System Design Concept
Activities Depend- | Effort |Resources| Plant | Plan
encies Start | End
Date | Date
4.7 Parallel Run) 20 PM, Users,
TL
4% Live Operations 1 PM, Users
49 Post Implement 90 PM,
Suppornt Support
Team

In the table above. the responsibilities have been assigned to generic classes of
resources. In real life, the names of individuals doing the particular task would be
mentioned. It is possible that activities can be reshuffled across people during the
life of the project based on the progress of the project. In case the planning was
being done at a more detailed level, theu the author. reviewer, coder and tester of
each program would have to be stated explicitly in the plan.

The generic abbreviations or class of people used above are deseribed below:

® PM - Project Manager
e TL - Team Leader responsible for a particular module or activity within the
project
» Users - The people who are the ultimate beneficiaries of the system. They
define the requirements of the system’
® Developers - People responsible for writing program specifications, coding
UTPs and Uit testing
& Technical Writers - Specialist documentation people who translate the system
functionality into a User manual
e Support Team - the team responsible for supporting the svstem afier it has
gone live
e DBA - Database Administrator 2
e Libranan - Person responsible for maintaining the source code library
It is also the responsibility of the Project Manager to develop an Organization
structure for the project team. This will enable people in the project team to know
whom thev should approach in case they have difficulties in doing activities assigned
to them. The difficulties could be relating to lack of resources, know-how or
administrative in nature, Refer to Hicrarchy Chart discussed under Role of System
Analyst.
4.5.3. Scheduling of Activities :
The next stop in Project Scheduling is to schedule the various activities so that
we can arrive at the final delivery date of the project. Scheduling of Activitics must
take into consideration the following aspects:

26

Software Proje ing
re Project Planing 267

e Dependencics between activities
o Availability of Resources

s Holidays and Vacations

= Contingencics

® Rework and Iterations

e User Requirements

Let us look at some of the points to be considered for cach one of the above,

Dependencies Between Activities : We have alrcady identified the
dependencies between activities when we did Identification of Activitics. When
we schedule activities we must take cognizance of the dependencies. Most Project
Management tools provide for automatic linkage of dependencies and the Project
Manager is forced to schedule activities based on the defined dependencies. The
dcpcn_du_ncics arc best understood through diagrams rather than tables or textual
descriptions. Common diagramming techniques like the GANTT chart or Network
diagram are deseribed under ‘Pictorial Descriptions”

Scheduling of a software project does not differ greatly from scheduling of
any multitask development effort. Therefore generalized scheduling tools and
techniques can be applied to software with little or no modification. The Program
Evaluation and Review Technique (PERT) and Critical Path Method (CPM) are
two project scheduling methods that can be applied to software development, Both
technigues develop a task network description of the project. It involves a pictorial
description of the activities from beginning to end of project. The network is defined
by developing a list of activitics (or tasks). sometimes also called the project Work
Breakdown Structure (WBS), which are associated with a set of dependencies or
orderings that indicate the sequence in which the tasks must be executed. Both,
PERT and CPM provide quantitative tools that allow the software planner to:

e Determine the criticai path - the chain of path that determines the total
elapsed time of the project

® Establish most likely time estimates for individual tasks by spplving statistical
techniques

e Calculate boundary times that define a time window for a particular task,

Availability of Resources : Another aspect of project scheduling relates to
wvailability of resources to execute the project. In this scetion, we are only dealing
with human resources required for the project. Other resources required for the
project are discussed under Resource Planning. It is possibie that the people who
are allocated to the project are not available from the start date as planned by you,
They may be busy in some other critical activity and cannot be spared for the project.
t Under such circumstance, either the start date must be delaved till the person is
made available or altemate resources must be mobilized if schedules cannot be
pushed ahead. Resource mobilization at short notice can only happen through
subcontracting the work to contract programmers. If permanent resources are to be

268 System Design Concept

Software Project Planing 269

recrnted then the lead time for recruitment must be factored into the scheduling
CXCTCISC

. Sometimes resources are available on a part-time basis. If this is the case then,
ihe effective manpower availability is only half or Quarter depending the amount

. of tme the person will be spending on the project. The equation, which must be
bome in mind, is given below:

‘ Effort = MNumber of working days between

Plan-Start-Date and Plan-End-Date

Multiplied by

Effective number of available resources

The key points to be noted in the above equation are the following:

« The number of davs is the number of working days and not calendar days

& The number of resources is the effective number of resources and not the
physical number ofiresources. The cffectiveness may be reduced on account of
part-time availability or the skill level of an individual.

In project scheduling, the equation is used to calculate the numbc_r of working
days required for completing the task. as the effort and number of cffective resources
are known. Once the numbers of working days are computed, the c:r_ld date of the
task can be calculated once the start date is fixed. It is normal practice to start an
activity as earlv as possible afier dependency conditions are satisfied. However,
this m}l_v not always be feasible, as resources may not be available. Thus, the end
date is always calculated based on above factors. : -

Holidays and Vacations : Whle planning, it is a good practice to take 1m10
account all holidavs and planned vacations that are going 1o be ta.k.en by pwphz
who are allocated to the project. If the above details are not fully availablc_ at t
stage a certain percentage must be prpwdcc! as_buﬂ“cr f‘or thusc_acn\-ltaes.
< 1 wou are dealing with international project teams
where work on different modules are dore in different con_mtr'ms and full details on
holidays and vacations may nof be available at the planning stage.
is nice if everything works out perfeetly. But expenences
always don't go to a plan. You must

nlanni
This is particularly the case wher

Caontingencies : It bk

are 3 f t things

software projects have shown tha wi kg0 fa

0:-:3vidn for sF:)mc unforeseen CONLNZENCIEs almm_m_of people, j;lﬂc%s ar pgrlg;‘:;\:l;:

f:)murguncics, fire fighting in some othcr areas within the Iorgam::it|;;:dcrl.c_ o

ntingencics do not occur, then the project will cumphcfc{-u iead of schedu c;h 2
is n:i from all aspeets. The idea is to present a realistic pleture rather than

15 & o

optimistic picture of the completion of the pr-QJcct_ , -
k and Iterations : An arca, which is most often |gnun?d by Proj

st .s 1o rework or itcrations due to some crrors in design or
Tcmr"f 1 1ot talking about changes 10 specifications, which will need
b ‘;::rlcasc We arc talking about incorporating review comments

Managers.,
specifications.
revision of plan

AR B ER R ENNNREFERFENRNN

27

and errors found during testing. It is a common practice to have two rounds of
system test, as the first round is normally a very turbulent one. Similarly, FS, Design

Test Plans and Documentation have reviews and time must be provided to ensure
that all review comments are tracked to completion,

User Requirements : We do not live in an idealistic world. If after doing all
the above scientific scheduling, we arrive at an end, which does not serve its purpose.
If RBI has sent a circular that all banks must submit a forcign exchange transaction
report in a particular format with effect from the first of January and based on your
scheduling exercise, the system is going to be ready only in mid February, the system
is not meeting the busingss needs. In such cases. an effort must be made to see if
the elapsed time of some activities can be crashed. Crashing can be done by one of
the following:

» Arranging for extra resources to meet peak time ioads

e Arranging for shift operations to speed up end delivery

& Use of productivity tools like automated testing tools, coverage analvzer,

| debuggers, etc.

e Adding more processing power to machines

The techniques described above may result in some reduction of elapsed time
but one must remember that it is not possible to pour five liters of nulk into a one-
liter can. There is a limit bevend which elapsed time cannot be reduced. It must
also be noted that when elapsed times are reduced, the risks associated with the
project, specially relating to timely delivery are higher.

At the end of the entire Project scheduling the table will appear as shown
below.

Activities Depend- Effort | Resources Plamt Plan
encies Start End
Date Diate
1. Project Initintion
1.1 User Request 1 2561996 | 25-6-19%
1:32 User Request Review 1 26-6-1996 | 26-6-1596
1.3 Feasibility Study 5 01-7-1996 | 10-7-199
1.4 Estimaton 3 15-7 -1996 | 20-7-1996
1.5 Approval of Estimates 3 21-7-1996 | 31-7 -1996
16 Risk Analysis : 2 21-T <1996 | 31-7 -1996
2. Planning aid Tracking
21 Initial Plan 1.5.
Close-Start 5 PM I-8- 1996 | 1 0-8-1996
22 Tracking and Review 20 WJ TL. | 1-8-1996 |31-12-199%
sers

-

T

System Design Concept

Software Project Planing

28

attention on those aspects. A typical GANTT chart for the activities in the life

‘ 271
Activitics Depend- Effort Resourcesd Plant Plan e
encies Start End Activitie Depend- [TEffort | Resourced Plam: Plan
Date Date encies Start End
2 Revision of Plan [PM 1-8-1996 [31-12-1996 - Daie Date
48 Live Operations I | PM, Users | 22.1-1997 | 22-1-1907
3. Life Cyele Activities PR
. ! Post Implement 90 PM, 22.1-1997 | 31-3-1997
il Funetional 50 PM, TL, Support Suppart
Speeifieations Users 1-8-1996 | 31-6-1996 s
32 Design Spesificalions 50 PM, TL. 4.5.4. Identifying Milestones ;
Reviewers | 1-9-1996 | 30-6-1996 There must be reviews at various stages of the project to ensure that the system,
33 Development 3.13.2 which is being developed, will meet use— requirements, will be cost effective and
Close-Start will be delivered in acceptable time frames. Periodic reviews say formightly or
331 Program Specificstions 40 | Develapers | 1-1 0-1996 | 15-11-1996 monthly are a must. The periodicity may have to be increased as the final date gets
| closer or if the project has run into troubled waters, The objective of these reviews
32 Unit Test Plans a0 Developers | 1-1 0-1996 [15.1 <1996 | must be to identify bottlenecks or issues related o the project and take corrective
333 Coding 60 | Developers [15-10-1996 [30-11-1996 | action s2 that the project ean be brought back on track or completed with minimum
| delay or cost overrun,
334 Unit testing 5] Dievelopers [15:1 0-1996 301 | - 1996 i e el T e) o
- o aordTE T Ni5ee | In addition 1o periodic reviews, it is important that phase reviews or milestone
34 System Test Plan 30 il ol sl Lol | reviews are also conducted. These reviews are conducted at the completion of a
15 User Acceptance Plan 30 Users | 15-10-1996 [20-1 1996 i mulestone. Thus milestones must be identified in the system life evele, Typical
i Documentation 38, 30 M, { milestonie reviews are review on cor pletion of Functional or Design Specifications,
’ Close-Close Technieal I on completion of Development, after User Acceptance Testing ete. The Project
Writers | 1-11 -1996 |31-12-1996 i Schedule maust indicate those activitics, which are milestone activitics. Reviews at
= o, T1 * the end of milestones must involve users as it involves movement of the project
37 System Testing 3.4, 45 P, TL., : k . . i
Close-Suart Developers | 1121996 |20-12-1996 | from one phase to another, Corrective actions will become costlier as the project
¢ts into move advanced phrases and hence it is important that milestone reviews
: : . [21-12-1996[31-12-1996 i & ! :
18 ‘l”"“‘F Acceptance CI3-5--“;-;“ 20 U“‘;‘.’I' e B | @re conducted punctually and with all partics present,
esting LETS * H . s Suiid
= Developers ¢ 4.5.5. Pictorial Descriptions :
39 Packaging and Release 10 PM.TL 1-1:1997 11 0. 1997 i There are two common forms of pictorial deszriptions used in Projeet
t Management. They are:
4 Implementation i ® (GGANTT Chart
41 Planning 3 PM. Users | 1-12-1996 |15-]2-1995 | ® PERT/CPM Network Diagram Let us look at them onc by one.
42 Testing Conversion 30 | PM. Users | 1-12-1996 |31-12-1996 ; GANTT Charts : These charts are plotted with time as X-axis and bars to
Users, PM 115-12-1996]31-11-1996 1 indicate the planned completion dates and actual progress for all the activities in
4.3 Freezing data ¥ ik x i the projeet. Most Project Management tools offer facilities for automatic generation
44 Database Definition 3 PMDBA L 1S1oLo0T [0e1n 99 i of GANTT charts from the data supplied in tabular format. These are very difficult
43 Transfer to Production 3 PM, f to draw manually for complex projects where numbers of activities are very large.
Librarian | 11-1-1997 | 12-1-1997 Inorder to effectively use the GANTT chart, it must be noted that it must be generated
-~ E 10 | PM. Users {atasummary level so that an overall picture of the status of the project is known. If
S Eoaionion T | 1311997 | 132121997 | the GANTT chart is so complex that the printout covers the entire wall of the room,
M. U then it will be extremely eomplex to analyze. A simple GANTT chart at summary
7 Paallel Rin ;:‘ g R s level will help in identifying critical bottlenecks and management can focus their

172

cyele stage of the project from the project from the project schedule

System Design Concept

" Software Project Planing -

15 given below,

)
J
J
J
b
»
»
]
»
J
b
)
)
)
)
)
J
)
)
)

)

Activities Aug 96| Sep 96| Oct 96| Nov 96| Dec 96| Jan 97
Functional /8 31/8
Specifications 11/8 11/9
Design 1/9 3009
Specifications 10/9 19/10
Development ;
Program 1o 15/11
specifications 20/10 5/12
Unit Test Plans /10 15/11
20/10 5/12
Coding 15710 30/11
Unit Testing 1510 | 30411
System Test Plan 10/10 15/11
User Acceptance 15710 | 20011
Plan :
Documentation 1711 3l/12
i 1712
'stem Testin
S = 20712
User Acceptance 21112
i 3z
Testing,
: 171 10/1
Packaging and :
J
Release

-3 ve GANTT chart planned schedule is given in gray while actual
pmgrl:s:l:; ;Ef?m in white. The dates given on the GAN_‘IT chart are the 'srmr: a;d
end date of cach activity. If you have a sophisticated Project Management oT | b:
resources allocated to cach activity, the planned effort and.acl.lual effort (:Etl’l'l :_1:;3‘:“
printed alongside. As vou can see from the above chart, it gtlpvcs you .:;1 Hmbh;.n
view of the status of the project. The management can then focus on the p

areas and find solutions to overcome the problems afier discussion with the Project

anager.) : ; —
2 !?‘RT!CPM Network Diagram : This is a diagram, in which all :"ft'_'"“mls
e o as a network of dependent activitics. The cffert for cach activity is
w

axpeatiy Realistic and Optimistic approach. The most likely

i Pessimistic.
estimated using a - Real -
date for completion of the activity 1S calculated as

29

273

w5 cnd on the same node, it implies

60,68,80

LE———riig]
3

29,3541
8.44 50

28,32,38

50.60,68
85,96,105
) —_—

19,26,34

68,74,80
=22
Fig. : 1

In the diagram given above, each activity is represented by an arrow and each
is.a milestone. The figures are the optimistic, realistic and pessimistic estimates
for each activity. For each activity, you have an Eariiest Start Date and Latest Start
Date. Earliest Start Date is the carliest date on which the activity can start based on
the dependencies of the various activities, Latest Start Date is the date on which the
| activity must be started so that it will be completed on tme and will not affect the
| overall delivery schedule of the project. It is a good practice to start on the Earliest
! Start Date but it is always not practical to start on the Earliest Start Date due to a
number of constraints. If the activity starts later than the Latest Start Date, then it
will impact the overall delivery of the project.)

The period between the Earliest Start Date and Latest Start Date is called the
Float. If the activity is started within the float period, it will not impact the overall
delivery of the project. The rationale for starting on the Earliest Start Date, if feasible
is to provide for incorrect estimation of effort, contingencies cte.

The most important item in the PERT/CPM Network diagram is the Critical
Path, which is explained in the next section,

28,32,36

node

274 System Design Concept

4.5.6. The Critical Path :

You will notice that the diagram above has two kinds of arrows -_blac}c. and
gray. The gray arrows are activities with float. Black ;.'\ctwitics are activities without
float. In activitics which do not have a Float, the Earliest Start Date and Latest Stan
Date are the same. There is no float or “free” time available in these activities - they
have to start on the specified day. Any delay in starting an activity with zero float
will result in delay of the final delivery of the project. The path of activities with zerp
float from the start of the project to the end of the project is called Critical Path. This
path is shown in black in the diagram, Activities-on the critical path need to be
monitored with more attention as any delay in these activities will delay the overall
completion of the project. If an activity on the critical path gets d_.r.tlayed and the
project has still got to be completed on time, then the future activities have to be
crashed. In order to still meet the deadline, the activities. which need to be crashud,
are the activities on the Critical Path. Crashing involves use of non-conventional and
extreme measures like getting resources on contact, working ovcrt:'mle oron holidays,
resorting (o shift svstem ete. To ensure timely completion. If crashing is done on a
project, it will definitely escalate the cost of the project.

5. Resource Plan :

You have already seen the various aspects relating planning of Human
Resources. In this section. we will focus attention on other resources required ﬁ:.r
the project. Typically, a software project will need a combination of the following
items:

e Hardware

O Servers

0O Workstations
e Software

0 Environment Software

O Third Partv Software

Q0 Included Products
s Tools

a Version Control Tool

QO Testing Tool

O Standards Tool

0 Code gencrators
e Communication

0 Data Communication Equipment

a Data Communication Software .

The hst given above 1s not comprehensive but a typical one for a scﬂu.'a.rc
project. It is the Project Manager s responsibility to ensure that the resources rc.qu1F0d
for the project are made available in a timely manncr as people without supporting
resources could lead to idle manpower and thus wastage of human resource
utihzation. Points that must be taken into consideration for the above resources are
ziven below :

30

Software Project Planing 275
5.1. Hardware :

Hardware required could be the backend machine (server) and the front end
workstations (Personal Computers or dumb terminals). The number of machines
and their configuration are important. Insufficient number of machines could lead
to loss of productivity. If the server machine i5 a look-alike of the final target machine
and not an exact replica, then time must be provided for last minute patches which
may be required to get it working on the target machine. If the configuration of the
machines is lower than the required specifications, some of the software may not
work properly and some may take longer time to develop or execute. thus resulting
in loss of productivity. In case the server is being used for other projects also, the
disk space requircments on the server must be specified - otherwise development
could slow down to non-availability of disk space.

5.2. Software :

You need Environment software like operating systems, database and front
end tools for dexclopment of software. The correct version of these tools must be
available for development. If the software is developed on a different version, then
effort will have to be put in to port the software to the new version before the
software is moved to production, Adequate time has to be provided for this in the
Project Plan. However, a bigger weakness under such a scenario will be that the
software would not have used all the features of the target version and could thus
have some design inefficiencics,

It is also important to have the required number of licensed copics for
development and production. environment. For development, you will need
development version of the environment software. In Production, only the run time
or executables may be required, These must be planned and procured in time.
Training on the environment software should also be provided to those people who
are going to be working on the deveiopment and do not have adequate knowledge
of the environment software.

You may also have some third panty software which interfaces with vour
product. Let us assume that you are developing a Banking software. Your customer
wants 1o use a signaturs verification package from a different vendor, as the users
are very familiar with it. In this case, you will need a copy of the third party software
during development so that the interface with the third party can be properly tested.
The procedures for getting a copy of the third party software for development and
Supporl must be organized. If the third party software is being upgraded when vour ,
project is under development, then it must be ensured that the svstem is tested with
the final version of the third party product before delivery of the system. "

Just like third party software. vou may also need to include some software in
your system. Continuing with the banking system example, the bank may hawve 1
some proprietary code for encrypting and storing passwords. The bank will only
give you the executable version of the softwarc. This software will have to be {
included in your final product as password validation may have to be done from
vanous modules in your system. 1

____Swstem Design Concept
‘Iouls B

T 5 1
(:001:1 \;';llﬁsr;qnu;ﬁ folr -:‘ﬂugi\bcr of functions within the project. You may
rol of software i anageme i <
s ot S aox.. for project management, for testing and
ools. In such cases, the organizatio
me cases, the user may insist on a too

nal standard must be followed. However, in

1 | used in their environment. Then tools wi
2 s will
o be either procured or got on loan from the client. In either case, it must be

mre? ﬂt::;:. ;;cﬁoyl:éc; :f:.n‘: ;r?:;tls;:nus‘t be provided Iadtx[ual.c training and support on
¥ v use it on the projeet.
{. Communication :
‘n case q:c project involves use or development of data communication software
| or wide area networks. the required equipment like modems, multiplexers,
- ptors must be procured in a timely manner. In some cases, if the actual
Jpment cannot be procured due to seme practical constraints, then simulation
iques will have to be done for testing of software. In addition to data
unication equipment, software like terminal emulators, file transfer protocals,
1| ctc. May be required for interfacing and testing with the system, which is
developed. The Project Manager must ensure that these equipments are
ble in 2 umely manner for the project.
*'nject Tracking and Oversight :
‘There’s an old sayving that” Drops of water make an Ocean’. A one day slip in
t schedule will rarcly be fatal to a project. It is when the days and add up, and
er the length of the project, that small delays can result in big problems. In order
,id the big problems. In order to avoid the big problems, Project Tracking and
ight on an ongoing basis is essential. Planning without Tracking is like planning
in conerete - vou will not get any fruits for your labour. The essential items
- proper tracking are the following:
*- Schedule Tracking
Resouree Tracking
e Cost Tracking
Management Oversight
ﬂchedule Tracking :
z‘mcking of schedule of projects is normally a Bottoms-up process. Unlike
ing, which is a Top Down process, Tracking is normally the reverse. In tracking,
’na on actual progress is gathered at the lowest level of activitics. Each
er must input the effort spent on allocated activitics along with the status
h activity. This information is then consolidated across various activitics to
spare reports for management reporting and review by Project Manager for
tive actions. The most comman methed used for gathening actual progress
inst various activities is Time sheets. Time Sheets are successful only when
ﬁm automated and linked to the plan so that automatic companson is available
ﬁ:‘ Plan and Actual progress. Typically, Time Shects capture the following
non:

31

reanizations have standards for usage of -

Software Project Planing 277

e Actual cffort spent on the activity

& Status of the Activity

@ Closed (Activity is fully complete)

o Percentage Completed

a Days required for completion

Reasons for Delay : Most software professionals do not like to enter timesheets
as they feel that the information will be used against them in their performance
appraisals in case some activities have gone beyond estimated time frames.
Timesheets have been successful only in organizations which have a culture that
this information will be used only for Project Tracking and nothing else. If this
culture is prevalent, then vou will get accurate information in the time sheets.
Otherwise people tend to manipulate information on timesheets to protect their
personal interest.

Another aspeet of timesheets 1s that it must be entered within acceptable
timeframes. If people don't enter timesheets at defined perniodicity, then the Project
Manager and Management will not know the true status of the project as the reports
will reflect an old status of the project. Enforcement of timely entry of time sheets
has to again be a cultural change in the organization and must be enforced as a
discipline. The Project manager must have aceess 10 information of people who
have not entered time shects so that he can follow up with them and enforce the
required discipline,

Once all the people have entered the time sheets, the Project manager can
consolidate the information and produce summary reports for circulation and
Analysis. This information must be analyzed as described under Management
Oversight. 1t is not sufficient if the information is circulated and filed as information
to all concerned,

6.2. Resource Tracking :

Utilization of Manpower resources is tracked using Time sheets as described
above. However. tracking of unilization of other resources has to be a combination
of manual and automated processes as per norms within the organization. Twpically,
the following information needs o be tracked

o Mumber of machines used by the Project

« Number of Software licenses utilized by the project

s Disk Space utilized by the project

The actual utilization information can be gathered by automated or manual
means. In order to know the actual project cost, it is important that lh.c resource
utilization 15 tracked by some logical means. It is not mgulred to split hair over
minor deviations in resource utilization as these are very difficult to measure. What
15 required is an overall process which has at least 80 percent accuracy in information.

o

78 Svsiem Design Coneept

5.3. Cost Tracking :

The actual utilization of Manpower and other resources must be translated to
=0st at the same unit cost that was taken during Project Planning when cost estimates
vere made. We can have another column which is based on actual costs which is
wpportioned over the resources utilized by the project. This may be lower or higher
an the unit cost which was estimated at planning stage. Thus the following costs
nust be computed for resource utilization:

= Cost at Unit cost used for planning

e Cost based on actual expenses incurred for the resoOurces

The first cost can be compared with the cost estimates made at the planning
tage to see if the project is still within appreved costs. In order to arrive at the total
woject cost, ather costs which are not covered above, must be added. Tyvpically,
ais will include items like Travel, Project lunches. local convevance ete, If the
atal cost of the project exceeds the total Project cost on a pro-rata basis, then onc
st review it to see whether we need to 1ake re-approval of estimates from project
ponsors.

-4. Management Oversight :

Management must review software projects at periodic intervals to ensure that
arrective measures from management side are taken to resolve project management
slated issues. Management Reviews of Projects are normally held at monthly or
artnightly intervals depending on the policics of the organization. It might also be
orthwhile to have a review on accomplishment of a milestone in the project. These
wetings must be attended by senior management personnel, and heads of
irastructure, Quality Assurance. Finance. Marketing with a two fold objective -

ley arc aware of the project status and secondly they can jointly resolve issues so
mt project schedules are not impacted. The points, which are normally discussed
t such meetings. are the following:

® Some activitics in the Project are behind schedule, What is the reason? How
m it be corrected? Will it have an impact on the final delivery date? Does customer
e to be informed of the delay?

® Is the Project still under budger or have costs gone bevond estimates. If costs
tve gone bevond estimates, what will be the final cost? Who will bear the overrun?
ow can it be minimized?

e What do the Quality metrics of the Project indicate? Is testing being done in
zanized and systematic manner? Are test plans being written before testing or are
&y just being documented for compliance?

® Are there too many changes to Reguirements? [s it being controlled? Is
stomer being told the cost and schedule impact of these changes?

* Does the pmj;ct have a resource or manpower problem? If ves. What 1s it?
hat should be the corrective action?

32

Software Projcet Planing 279

At the end of the meeting, a detailed action plan should be drawn out indicating
the corrective measures required to bring the project back on track. If the project
has already lost so much ground that it will definitely have an impact on the end
delivery date, then the user or client must be informed of the delay.

7. Project Metrics :

We live in the Era of Excellence. In the world of quality, an oft quoted slogan
is “Can’t Measure; Can't Improve”. In other words, it means that you can only
improve in arcas where quantitative measurements are possible, Subjective data
always leads to incorrect inferences. Similarly if the objective data is suspect, then
vou will end up taking incorrect decisions. The quantitative data must follow the
80-20 rule - it should be about %0 percent accurate. The cost for improving the
accuracy of measurement for the last 20 percent may be higher than the cost of the
praject itself and may not thus be cost-cfective in taking decisions related to the
Project, The key metrics to be measured arc the following:

e Schedule & Effort Metrics :

& Quality Metrics

e Cost Metrics

In all the above metrics, you need to take the absolute value of the data of the
project and compare it with the plan and if the organization is maintaining a project
history database, then it should compare the data with historical metries to arrive at
realistic conclusions based on historical data. Let us look at each one of the above
metrics and see how they can be used for monitoring the project.

7.1. Schedule & Effort Metrics :
The key data for these metrics are a comparison of the following:
Planned effort and Actual Effort
Planned Start-End date and Actual Start-End Dare

The first comparison will give us the Effort Variance while the second
comparison will give us the Schedule Vanance. Let us sav that the Actual Effort
has exceeded the Planned Effort - in this case it is a negative variance as the cost of
the project is going to be higher than estimated. In such a situation, it might be a
good idea to look into the historical database of similar projects and compute an
cffort Predictability factor as follows:

Actual effort less Planned Effort
divided by
Planned Effort

This must be computed as a percentage and averaged out across all similar
projects. This will give you a trend and perspeetive for the praject. If it works out
that the above average deviation is negative by 28 percent and the current project is
running at a negative deviation of 13 percent, then vou can expect that this project
will have a further deviation as it progresses. This does not imply that one should
stop trying to bring down the effort deviation - it is only an indicator of likely cvents

—
350

o follow,

System Design Concept

T'he long term corrective measure is to revi
ning process and productivity metrics.

5 I'he sccond comparison will give us the slippage in terms of clapsed days. If
actual end date is likely to be after the planncd completion date, then we? Knlow
*{ there is probably going to be a delay in the completion of that a.ctivity_- If that
ity happens to be on the critical path, then it will have an impact on the final

glivery date as well. Again, we can do a comparison!”, with historical data as
ed in Effort Predictability.

ew the estimation process, the

Another metrics which would be on interest to Management relates to
toductivity. Normally, Produetivity is measured as Number of tested lines of code
duced per day or number of function points produced per day. This figure must
be measured and reported to Managememt for every review meeting, as it will give
pndication if there are people related or Changes related issues in the project. If
this figurc deviates significantly. positively or negatively, from the historical data,
¢ is cause for concem. If the productivity is much higher, then process adherence
and testing process or understanding of requirements must be investigated.
crnativefy, if there are some logical explanations like the use of code generators
or testing tools, then leap in productivity is understandable. If the productivity figure
ey low, then it could be on account of lower skill leve! in the personnel working
on the project. frequent changes in requirements being mcorporated in an ad-hoc
nner or some inter-personnel issucs in the project team.

. Quality Metrics @ A ’

Quality Metries refers to measurement of the Quality of the system. T_}-plcaliy,
is measured in number of errors per 1000 lines of code ofunction points. The
most important aspect in this metric is the definition of various terms and consistent
lication of the definition. Some of the key issues are as follows:

+ How do vou define an error in a system? It is possible 1o oombiry:l multiple
rs and n,‘])ﬁ-rl them as one error. There must En. an objective definition of an
or. There must thus be ar objective defimtion of an v-urror There are no proven
< for this definition but each orzamzation must define it objectively and more

yortantly, use it consistently -

+ How do vou define lines of code? Do vou include comment !r.ncs and othnlzr
-executable lines of code. What if some programmers have written multiple
line while another programmer has writien one statement per

tements i one . ot
1 1 " o "

. Again, clear organization definitions are required.

« How do vou define lines of code when vou arc making a modification to the

it] = ine: -h were changed? Or is it the total number
tem” s it just the number of lines which were It

of hncs
There are no €asy answers o ih_::l:hbmu questi .
ound rules for the above T'he key s {_‘,c_rn.‘,nf.
< without frequent changes of definitions

across all programs which were modified
ons. The industry is itselfevelving
:nt application of orgamzation

33

Software Project Plan ing

281
data, we will get some idea about the

If we compare this figure with historical
level of testing and Quality of code. In this case also, if iation 1 i
. 2 . if the deviation is outside
acm_:pta_l‘!h: band, then there is a need for introspection. If the number of en‘lorsi:
testing is very low, then the test plans are prabably not adequate and coverage of
testing is poor. In all probability, the same code is being tested again and again and
large chunks of code or skill level of Programmers comes into question. 1 it is

w:'t?-nin the acceptable band, then the testing is precceding properly and no corrective
action need be taken.

The historical data used for comparison should be the average of a number of
projects in similar environment.

7.3. Cost Metrics :

This is really the role of the Finance manager. The inputs for calculating costs
havlc to be provided by the Project Manager Based on the inputs given by the
Project Manager, the Finance Manager calculates the actual cost of the project
based on unit costs supplied at planning stage and actual expenses incurred. These
expenses are compared with the budgets allocated to the project to see if the project
15 under budget or over-budget. If it is outside an acceptable range, then corrective
actions need to be taken. If the project cost is much lower than the budget cost, then
the estimation process must be reviewed. 1€ the project cost 1s very high, estimation
process must be reviewed along with tighter monitoring of cost to increase the cost
effectiveness of the project,

8. Project Closure :

Projects can be closed on completion of all activities or prematurely if it is
abandoned due to a change in business priorities or some other reason, In either
case. the project must be closed properly so thatall its data is logged into the historical
databasc. If this is not done, the historical data will not get updated and will not
reflect the true picture, Irrespective of whether it was 2 normal or premature closure,
the following activities must be completed:

* A letter of project completion must be obtained from the customer

» Details regarding Schedule, Effort. Productivity, Quality and Cost Metrics
must be entered into the svstem.

= All information regarding the project must be circulated to impacted partics.

* All documentation must be put into the library or Document management
eystem

® All software configuration items must be logged into the Source Code library

* A Release note indicating the release of all resources must be sent to the
appropriate managers,

e All items which are not required must be deleted from disk

® Team members must be communicated of their next assignment

Before disbanding the project team, a formal meeting must be held where
team members must be given an opportunity to share their experiences on the project.

Swstem Design Concept

< can give valuable inputs to improve the performance on the next project. This
it be done in addition to formal performance appraisal which is done on a one-
ane basis,

Miscellaneous Items :

You can read the best book on Project Management, attend the best training
gram on Project Management but there is no substitute for practical experience.
1 have to be in the hot seat to experience the ecstasy and disillusionment, the
wpiness and the sorrow, the relief and the anxiety and a number of such feelings.
= day the Project Manager may feel that he is on top of the world and everything
ailing smoothly but one minor incident like the user asking for some additional
ds or some key people leaving the project or a malfunction in some hardware
aurces can just leave vou feeling at the other end of the tube at the end of the day.
= best look alike of a Project Manager from the non-software world is the juggler.
has to keep juggling his resources and be on the move all the time to ensure
xumum resource utilization and clearance of all bottlenecks. In this section, we

k at some of the juggling acts that a Project Manager may be called upon to do
-ng his stint as Project Manager. The topics discussed are:

e Pcople Management

» Resource Management

& Quality v/s Schedule

e System Integration Issues

o Idcalism vis Realism

e Sub-Contractor Management

Let us just bricfly look into cach one of the above.

1. People Management : _

Software Projects are successful if the Project Manager is an excellent People
anager. Exceuting software projects is all about getting the best out of people as
team. There may be a few technically brilliant people, there may be a ff:W who
ww the applicﬁticn inside out, there may be a few whose dnd:.gahon and
mmitment arc unquestionable, and so on... but the key is to harness this group of
verse people to think along similar lincs and work towards a common objective.
Il inter personal problems and confliets must be resolved as soon as Lhe.y come to
¢ knowledge of the Project Manager. Doing timely appraisals and sanllng people
| training at the time when it is required brings that additional c_.onunzmrfzmlfrom
sople. Periodic socializing in the form of project lunches and dinners, piemcs or
Tsite meetings make people feel that they are important. A pat on the_back when
imeone has done a reasonable job make one feel that his work is nmlo:::d. Tht:su
¢ casy 1o do when the going is good. The real test of a project manager is when is
> against some odds.... if the Project Manager can maintain his cool and get the
:st out of his tcam even under trying circumstances, the team is a sure shot winner
| the-way. The way to success in a software project is Teamwork.

34

Software Project Planing 283

9.2. Resource Management :

Probably next in eriticality to people management is Resource Management.
Software projects are always exccuted under very tight resource constraints.
Workstations are in short supply, disk space is a constant irritant, not enough licenses
of the compiler... these are standard complaints vou are likely to hear in a software
organization. There are many reasons ranging, from budgetary constraints to system
integration constraints which could be rationale for the situation. The role of the
Project Manager is to understand the constraints and try to find solutions within the
constraints rather than stating, ‘My projeet is in trouble. [asked for X and 1 am not
even getting .5 X', Some of the common ways of solving resource management
issues relates to restoring to shift operations so that resources can be shared and
there is better utilization, Operating in shifis has a big negative whereby everybody
does not get to know cach other as they will be working at different times. Though
the Project manager must accept and work within the ziven constraints, it is the
Project manager’s responsibility to keep Managemeat, aware of the ideal
requirements and request for them as soon as possible. The thrill of completing a
project successfully under heavy resource constraints is unparalleled.

9.3, Quality v/s Schedule :

There is an oft-quoted saying *I want it Good, Fast and Cheap’. Most marketing
people say that there is a contradiction in the requirement as if it is Good and fast,
it cannot be cheap, ifits fast and cheap, it is unlikely to be good and if it is cheap
and good, then it will take a long time 1o complete. The Project Manager’s job is to
ensure that all three happen. The product must be Good, Fast and under budget.
One of the common “compromises” a Project manager is often asked to make is to
cul comers on some ‘time consuming’ processes like reviews, test plan writing,
documentation of project plan ete. There is a school of thought that these are not
required for software development and the only items which are required are code
and user manual which are the ultimate deliverables. These perceived short cuts
cventually turn out to be long cuts as “the project will eventually run into trouble at
some point for taking the short euts. The project manager must have extremely
good negotiating skills to convince people of the benefits of being process oriented.
However, process orientation should not tum into burcaucracy - If burcaucratic
approach is taken, the project will get delayed and delayed and will eventually die
a natural death,

9.4. Systems Integration Issues :
We are living in a world where technology 1s changing very rapidly. One of the
items where a lot of time is spent is trying out new tools, finding and evaluating

- compatibility of tools, negotiating and getting trained on the selected tools etc.

Technology has become so fragmented that most software involve some pieces
give by different vendors which have to talk to each other. The newer the technology,
the more complex are the issues relating to system integration as knowledge level
on the new tools is not very high. In a project plan one must provide adequate

284

Swstem Design Concepy
these activitics cat into other planned activities
; . This increase the probability of errors as the
chance of introducing an error becomes very high. Once a planned fime has beey
provided for these activitics, time spent on these activities can be monitored and
ensured that more than budgeted time is not spent - or atleast we arc aware that this
is likely to lead to a delay in delivery. '

9.5. Idealism v/s Realism :

cushion for these activitics. Otherwise,
which then have to be rushed through.

A Process oriented Project manger is a good project manager but a bureaucratic
praject manager is a lousy project manager. If the clause numbers and policies are
rattled for every event in the project, then people associated with the project so get
frustrated. Instead of quoting clause number and saying that we have to follow the

book, a good project manager wil! explain the rationale of the process and the |

benefits of following the process. If this logical approach is taken, it benefits all
concerned as people hike to be convinced rather than told that this is the way to do
things. A project manager must alwavs be open to new ideas and suggestions. The
process manual need not be perfect in all respects. If somebody comes up with a
good suggestion which is logical and does not result in any loss of control or
productivity, it must bz evaluated and implemented quickly. The Software
Engincering group must also be immediately notified so that they can evaluate it
and sce if it can be implemented at the organization level,

9.6. Sub-Contractor Management :

If an organization gives out a part of a project to a subcontractor, then the
subcontracted project must be monitored as a separate project using all the techniques
described so far, The subcontracted project must be linked to the main project, as it
will appeur as an activity in the main project. Project Management and Quality of
deliverables are still very much the responsibility of the parent organization as they
have a commitment of overall delivery to the elient.

Very Short Questions:

1. What do Project Management 7

2. What is COCOMO Model ¥

3 What is Project Cost estimation *
4. Define Risk.

5 ‘What is Resource Management ?

35

Software Project Planing

285

Short Questions :

Describe Project sizing and Effort estimation.

2. What are the factors of project cost estimation ?
3. What is risk analysis 7 Describe the types of Risk involved in project 7
4. What do you mean by Software Project échuduling 2
5. What is software resource planming 7
Long Question :
1. What do you mean by project management.
2. What is risk analysis? Discuss all type of risks for risk analysis.
3. Short note on -
(a) Line-of-code (b) COCOMO model
{c) GANTT Chart (d) PERT/CPM network diagram
4. Discuss various Activity Dependency?
5.

Discuss various methodology for project management,

Qaa

13

DESIGN CONCEPTS AND MODELS

Abstraction
Refinement
Modularity

Software Architecture
Structural Partitioning
Data Structure
Information Hiding
Design Model

Design Documentation 4

=R I R R e

.

A set of fundamental software design concepts kas evolved over the past three
decades. Although the degree of interest in each concept has varied over the years,
each has stood the test of ime. Each provides the software designer with a “oundation
from which more sophisticated design methods can be applied. Each helps the
software engineer to answer the following guestions:

@ What criteria can be used to partition software into individual components?

+ How is function or data structure detail separated from a conceptual
representation of the software?

s Are there uniform criteria that define the technical quality of a software
design? ;

o M. A. Jackson once said: “The beginning of wisdom for a softwaie engincer
is to recognize the difference between getting a program to work, and_gcmng it
right”. Fundamental software design concepts provide th_;u necessary framework
for “getting it right”. They provide the underlying basis for development and
evaluation of techniques.

1. Abstraction :

Abstraction consists of focusing on the cssential, inherent aspeets of an entity
and ignoring its aceidental propertics. In system development, this means focusmgf
on what an object is and does, before deciding how it should be implemented. Usc

36

Design Coneepts & Models 287

of abstraction preserves the freedom to make decisions as long as possible by avoiding

| premature commitments to details. Use of abstraction during analysis means dealing
only with application-domain concepts, not making design and implementation decision

| before the problem is understood. Proper use of abstraction allows the same model

| to be used for analysis, high-level design, program structure, database structure and
| documentation.

Each step in the software engincering process is a refinement in the level of
| abstractior. of the software solution. During system engineering, software is allocated
| as an element of a computer based system. During software requirement analysis,
| the software solurtion is stated in terms that are familiar in the problem environment.
| As we move through the design process, the level of abstraction is reduced. Finally,
the lowest level of abstraction is reached when source code is generated.

i Three widely used abstraction mechamsms in software design are functional/
i procedural abstraction, data abstraction and control abstraction. A functional/
- procedural abstraction is a named sequence of instructions that has a specific and
limited function. Functional/procedural abstraction can be generalized to collections
| of subprograms. For example, the word “open™ on the door. “Open™ implies a long
| sequence of procedural steps (e.g. walk to the door, reach out and grasp knob, turn
::-\Il.(ﬂ‘l and pull door. step away from moving door, etc.)

A data abstraction is a named collection of data that describes a data object. In
Eﬂm context of the procedural abstraction open noted above, we can define a data
labstraction called door. Like any data object, the data abstraction for door would
encompass a set of attributes that describe the door (c.g. door type. swing direction,
(opening mechanism, weight, dimensions). It follows that the procedural abstraction
“open” would make use of information contained in the attributes of the data
abstraction “door™, '
i Control abstraction is the third form of abstraction used in software design,
|Like procedural and data abstraction, control abstraction implies a program control
{mechanism without specifving internal details. Control abstraction is used to state
E.‘l desired cffect without stating the exact mechamsm of control.

2, Refinement :

' Step-wise refinement is a top-down design strategv originally proposed by
iNiklaus Wirth. The architecture of a program is developed by successively refining
llevels of procedural details,

Refinement is actually a process of elaboration. We begin with a statement of
function (o- description of information) that is defined at a high level of abstraction,
That is, the statement describes function or information conceptually, but provides
in'bu information about the intermal workings of the function or the internal structure
if the information. Refinement causes the designer 1o elaborate on the original
tatement, providing more and more detail as cach successive refinement
lelaboration) oceurs.

-
‘B8 Svstem Design Concept

Design Concepts & Models 289

Abstraction and refinement are complementary concepts. Abstraction enables
chigncr to specify procedure and data and vet suppress low-level details.
cfinement helps the designer to reveal low level details as design progresses.
‘th concepts aid the designer in creating a complete design model as the design
»volves.
Modularity :
The coneept of modularity in computer software has been cspoused for almost
n.ur decades. Software architecture embodics modularity, that is, software is divided
iato separately named and addressable components, called modules, that are integrated
satisfy problem requirements. Modularity is the single attribute of software that
ows a program to be intellectually manageable. Modular system consist of well-
. manageable units with well-defined interfaces among the units.
Under modularity or over modularity should be avoided. Animportant question
arises when modularity is considered? How do we define an appropriate modui_:: of
‘given size? The answer iies in the method(s) used to define rr'fndulc‘ withtn_ a
svstem, Meyer defines five eritena that enable us to evaluate a design method with
*spwt to its ability to define an effective modular system:

e Modular decomposability - If a design method prm'idcsla systematic
‘echanism for decomposing the problem into subproblemf,_ it will reduce Irh::
» ‘omplexjt:.-' of the overall problem, thereby achieving an effective modular solution,

& Modular composability - If a design method m?ics_exis_ting (reusable)

esign components 1o be assembled into a new svstem, it will yield a modular
solution that does not reinvent the wheel. .
o) . Nodular understandability - If a module can be upderstoog as a stand-
lone unit (without reference 1o other modules) it will be easier 1o build and easier
‘o change. :)
« Modular continuity - [f small changes to the system requirements result u'::
changes to individual modules, rather than system-w ide changes. the impact o
‘:ha,ngc—indum:d side effects will be minimized. B o
e Modular protection - If an aberrant condition occurs within a mod:]; a:ﬁ
is effects are constrained within that module, the impact of error-induced si
effects will be minimized.

Modularity enhances design clanty, which in turn e¢ases implementation,

cbugging, testing documenting and maintenance of the software product.

4. Software Architecture : - 1

Software architecture refers to the overall structure of the so&\agn, 311.:_4. the

5 i:: which that structure provides conceptual integrty for a system. In its simplest
way

i architecture is the hierarc! com .
;: i ner in which these component interact. and the structure of the data that are
c man S

‘usc-d by the components.

37

hical structurc of program components (modules), .

One goal of software design is to derive an architectural rendering of a system.
This rendering serves as a framework from which more detailed design activities
are conducted. A set of architectural patterns enables a software engineer to reuse
| design-level concepts.
Shaw and Garlan deseribes a set of propertics that should be specified as part
of an architectural design:

e Structural properties - This aspect of the architectural design representation
| defines the components of system (e.g. modules, objects, filters) and the manner in
| which those components are packaged and interact with one another.

' e Extra-functional properties - The architectural design deseription should
| address how the design architecture achicves requirements for performance, capacity,
| reliability, security, adaptability and other system characteristics.

e Families of related systems - The architectural design should draw upon
. repeatable patterns that are commonly encountered in the design of families of

isimilar systems, In essence, the design should have the ability to réuse architectural
building blocks. '

Given the specification of these properues, the architectural design can be
| represented using one or more of a number of different models. Structural models
‘represent architecture as an organized collection of program components. Framework
gmmicls ncrease the level of design abstraction by attempting to identify repeatable
|architectural design frameworks (patterns) that are encountered in similar tvpes of
iapplications. Dynamic models address the behavioral aspects of the program
|architecture, indicating how the structure or svstem configuration may change as a
ifunction of external events. Process incdels focus on the design of the business or
!roclmica] process that the system must accommodate Finally, functional models

iran be used to represent the functicnal hicrarchy of a svstem
H

Control Hierarchy : Control hierarchy. also called program structure,
(represents the organization of program components (modules) and implies a
:Ihicm!ch_\' of control. It does not represent procedural aspects of software such as
iscqu-.;rlcc of processes, occurrence/order of decisions or repetition of operations.

Many different notations ar¢ used to represent control hierarchy, The most
ikely is the tree-like diagram shown below. However, other notations, such as
Warmicr-Orr and Jackson diagram may also be used with cqual effectivencss.

In the figure, dept and width provide an indication of the number of levels of
}Imntrol and overall span of control, respectively. Fan-out is a measure of the number

of modules that are directly controlled by another module. Fan-in indicates how
many modules directly control a given module.

i
1

The control relationship among modules is expressed in the following ways:

A module that controls another module is said to be super ordinate to it;
sonversely, a module controlled by another is said to be subordinate to the controller.

200 Svstem Design Concept

For example, as shown in figure, module M is super ordinate to modules a, band ¢.
Module h is subordinate to module ¢ and is ultimately subordinate to module M.
Width-oniented relationships (e.g. between modules d and ¢), although possible to
express in practice, need not be defined with explicit terminology.

Width
I

Fig. 1 : Structure terminology

The control hicrarchy also represents two subtly different characteristics of
the software architecture: visibility and connectivity. Visibility indicates the set of
program components that may be invoked or used as data by a given component,
even when this is accomplished indirectly. For example, a module in an object-
oriented system may have access to a wide array of data attributes that it has inherited,
but only make use of a small numbcr of these data attributes. Connectivity indicates
the set of components that are directly invoked or used as data by a given component.
For example, a module that directly causes another module to begin execution is
connected to it.

38

Design Concepts & Models 291

5. Structural Partitioning : i s
The program structure should be partitioned both horizontally and vertically.

Function 2

Fig. 2 - Horizontal partitioning

Decision-making
modules

Fig. 3 : Architectural partitioning

As shown in the above figure. horizontal partitioning defines separate branches
of the modular hicrarehy for cach major program function. Contral modules,
represented by a darker shade, are used to coordinate communication between and
execution of program functions. The simplest approach to horizontal partitioning
defines three partitions - input, data transformation (often called processing) and

output. Partitioning the architeeture horizontallv provides a number of distinet
benefits:

Results in software that is casier to test

® Leads to software that is casier to maintain

e Resulis in propagation of fewer side effects

& Results in software that is casier to extend

Because major functions are decoupled from one another, change tends to be
less complex and extensions to the system (a common occurrence) tend to be easier

-

—_—
wwh.\-h without side effects. O the negative side, hor;
SESThore data to be passed across module interfac

ntrol of program flow (if processing requires i
1o another),

cal partitioning, often called factoring, suggests that control (decision making)
ROk should be distributed top-down in the Program architecture Top-level
Juld@Pshould perform control functions and do little actual proucslsing work,
that reside low in the architeeture should be the waorkers, performing ali
putational and output tasks,

gl Nature of change in program architectures justifies the need for vertical
Mg, A change in a control madule (high in architecture) will have a higher
v of propagating side effects 1o \ modules that are subordinate 1o it A
© a worker module, given its low Jevel n the structure, is less likely to
propagation of side cffects, In general, changes to computer programs
Around changes to input, computation or transformation and output, The
yntrol structure of the program {i.c.. its basic behavior) is far less likely to
or this reason vertically partitioned architectures are less likely to be
@c 1o side cffects when changes are made and will therefore be more
able - a key quality factor.
Structure :
P structure 1s a representation of the logical relationship among individual
of data. Because the structure of mformation will invariably affect the
gecdural design, data structure is an important as program structure to the
aton of software architecture,
structure dictates the organization, methods of access, degree of
ativity and processing alternatives for information, It is important to understand
¢ methods available for organizing information and the concepts that
ie information hierarchics ;
organization and complexity of a data structure are limited onlv by the
g Of the designer. There are, however. a limited number of classic data
= that form the building blocks for morc sophisticated structures
plar item is the simplest of all data structures. As its name mmplics, a scalar
presents a single element of information that may be addressed by an
that is, access may be achieved by speaifving a single address in storage,
en scalar items are organized as a list or contiguous group, a sequential
ormed. Vectors are the most common of all data structures and open the
vartable indexing of information.
1 the sequential vector is extended to two, three and ultimately, an arbitrary
" dimensions, an n-dimensional space is ereated. The most common n-
2l space is the nwo-dimensional matrix In most programming languages,
sional space is called an array.

39

S —

i
!
!

Design Concepis & Models 263

Items, vectors and spaces may be organized in a variety of formats. A linked
list is a data structure that organizes noncontiguous scalar items, vectors or spaces
in a manner (called nodes) that enables them to be processed as a list. Each node
contains the appropriate data organization {e.g., a vector) and one or more pointers
that indicate the address in storage of the next node in the list. Nodes may be added
at any point in the list by redefining pointers to accommodate the new list entry.

Other data structures incorporate or are constructed using the fundamental
data structures described above. For example, a hierarchical data structure is
implemented using multi linked lists that contain scalar items, vectors and possibly
n-dimensional spaces. A hicrarchical structure is commonly encountered in
applications that require information categorization and assoc; ativity. Categorization
umplies a grouping of information by some genenc category. Associativity implies
the ability to associate information from different categorics,

It 15 important to note that data structures, like program structurcs, can be
represented at different levels of abstraction.

Software Procedure : Program structure defines control hierarchy without
regard to the sequence of processing and decisions. Software procedure focuses on
the processing details of each module mdividually. Procedure must provide a precise
specification of processing, including sequence of events, exact decision points,
repetitive operations and cven data orgamzation/structiure

Procedure for

Procedure jor
suparordnate module

"

Fig. 4 : Procedure is lavered

I Swstem Design Concepi

There 15 a relationship between structure and procedure, Processing indicated
cach module must include a reference to all modules subordinaie io the module
w2 described. A procedural representation of software is lavered as illustrated in
below mentioned figure.

Information Hiding :

Information hiding is a fundamental design concept for software. The principle
nformation hiding suggests that modules should be specificd and designed so

information (procedure and data) contained within a module is inaccessible to
«r modules that have no need for such information.

When a softwarce system is designed using the information hiding approach.
1 modules communicate only through well-defined interfaces.

The use of nformation hiding as a design eriterion for modular systems provides
reatest benefits when modifications are required during testing and later, during
ware maintenance, Because most data and procedure are hidden from other
s of the software. inadvertent errors introduced during medification are less
v to propagate to other locations within the software.

resign Model :

The design principles and concepts establish & foundation for the creation of
lesign model that encompasses representations of data, architecture, interfaces
procedures. Like the analysis model, in the design model cach of these design
ssentation is tied to the others, and all can be traced back to software

rements.,

Enity-
Relationshig
Diagrai

State - Tlansm

Diagram

[rata Flow
Diagrara

The analvsis model
Fig. 5 : Translating the analvsis model into a sofiware design

The design model

S —

40

Design Concepts & Models 295

The design model is represented as a pyramid. The symbaolism of this shape is

important, A pyramid is an extremely stable object with a wide base and a low
center of gravity. Like the pyramid, we have to create a software design that is
stable. By establishing a broad foundation using data design, a stable mid-region
with architectural and interface design and a sharp point by applying procedural
design, we create a design model that is not casily tipped over by winds of change.
A smallest change may cause the pyramid (and the program) to topple.

The methods that lead to the creation of the design model are discussed further,

Each method enables the designer to create a stable design that conforms to the
fundamental concepts that lead to high-quality software.

9. Design Documentation :
Design specification Outline:

II.

LIS

Scope
A, System objectives =
B. Major software requirements C. Design constraints, limitations
Data Design
A. Data objects and resultant data structures
B. File and database structures
I, externa! file structure
a. logical struciure
b. logical record description
. access method
2, plobal data
3. file and data cross reference
Architectural Design
A Reviow of data and control flow
B. Derived program structure
Interface Design
A Human-machine interface design specification
B, Human-machine interface design rules
C. External interface design
L. Interfaces to external data
2. Interfaces to external systems or devices
D. Internal interface design rules
Procedural Design
For each module:
Processing narrative
Interface description
Design language (or other) description
Modules used
Internal data structures
Comments/restrictions/limitations

TEDOmE

b

1. Requirements Cross-Reference

" 1. Test Provisions
\ I, Test guidelines
2. Integration strategy

3. Special considerations
| 111 Special Notes
Appendices
The document outlined above can be used as a template for a design
ification. Each numbered paragraph addresses different aspects of the design
model. The numbered sections of the design specification are completed as the
igner refines his or her representation of the software.

The averall scope of the design effort is described above. Much of the information
ntained in this section is derived from the svstem specification and the analysis
¢l {software requirements specification).

The data design. describing external file structures, intemal data structures and
cross reference that conncets data objects to specific files. The architectural
ign. indicates how the program architecture has been derived from the analysis
odel. Structure charts are sued to represent the module hierarchy. External and
ternal program interfaces ave represented and a detailed design of the human-
achine interface is described. Modules - separately addressable clements of
fiware such as subroutines, functions or procedures - are initially described with
English-language processing narrative explains the procedural function of amodule.
| ter. a procedural design tool is used to translate the narrative into a structured
ription.

The design specification contains a requirements cross-reference. The purpose

*flhig crass-reference matrix is - to establish that all requirements are satisfied by
the software design and to indicate which modules are eritical to the implementation
If specific requirements.

The first stage in the development of test documentation is contained in the
*csr;_.;n document. Onee software structure and interfaces have been us‘}nblishod.
¢ can develop guidelines for testing of individual modules and intcgration of ﬂ_n:
‘:tim package. In some cases, a detailed specification of test procedure oceurs in

arallel with design. In such cases, this section may be deleted from the design

cification.
Design constraints,
specialized external interface,

Svstem Design Concept

such as physical memory limitations or the necessity for a
may dictate special requirements for assembling or
ckaging of software. Special considerations causcd by u'c necessity for program
ﬁcrlas-_ virtual memory management, high-speed processing, or other factors may
s modification in design derived from information flow or structure
‘ Algorithms descriptions. alternative prqcudurus. tabular data, cxcerpts from
@ hor documents and other relevant information arc presented as a special note or

as a separate appendix.

Desipn Concepts & Maodels

{ Questions '

Very Short Questions:

2
LS
4,
5

What is Abstraction ?

Define Modularity ?

What is Information hiding ?

What do you mean by Software Architecture?
What is design model ?

Short Questions:

1. What do vou mean by refinment 7
2. What is modulaerity ? Describe Various tvpes of modulariny ©
3. What do you mean by Program Structurc 7 o
4. Deseribe structural Partitioning,
5 Describe Data structure,

Long Question :

5

Short note on -

(a) Abstraction (b) Rzfinement (c) Modulariny
What do vou mean by software Architecture?
‘What is structured partitioning”? Discuss in detail.

What do vou mean by design model & design documentation?

i |

41

297

