UNI'T-III

" Testing fundamentals: Objectives, principles, testability, Test cases: White
box & Black box testing strategies: verification & validation, UNIT test, integration
testing. validation, testing, system testing, System Implementation, Maintenance
and documentation, Document Configurations Maintaining a Configuration.

Unit - 111

Testing and quality assurance 168 — 199

documentation implementation and maintenance 200-219

9

TESTING AND QUALITY ASSURANCE

Fundamentals of Software Testing
. White Box Testing
2.1. Basis Path Testing
Black Box Testing
3.1. Equivalence Partitioning
3.2. Boundary Value Analvsis
Strategics towards Software testing
. Unii Testing
Integration Testing
6.1. Top-Down Integration
6.2, Bottom-Up Integration
7. Validation Testing :
7.1. Alpha and Beia testing
§. System testing
%.1. Recovery Testing
%.2. Stress Testing
8.3, Security Testing
9. Role of Quality in Software Development
10. Activities Involved
10.1. Application of Technical metheds
10.2. FTR (Formal Techaical Peview)
10.3. Software Testing
10.4_ Control of change
L 10.5, Mcasurement

[

"

[

10.6. Record keeping and reporting

Software development is not a precise science, and .huma.ns bnf.ing as crror
prone as they are, softwarc development must be accompanied by quality assurance
activities. It is typical for d?cvclapcrs to spend around 40% of the w_ml Pro;nc:l time
on testing. For life critical software (c.g. flight cl:_m!r_ol. mcm_r monitoring), testing
can cost 3 to 5 times as much as all other activitics combined. The destructive

Testing and Quality Assurance 169

nature of testing requires that the developer discard preconceived notions of the
correctness of hisher developed software. This means that testing must be done
from an entirely different perspective that of a developer.

In software development project, errors can be come in at any stage during
development. The main causes of errors are

1. not obtaining the right requirements,

2. not getting the requirements right, and

3. not translating the requirements In a elear and understandable manner so
that programmers implement them properly

There are techniques available for detecting and eliminating errors that originate
in various stages. However, no technique 1s perfect.

1. Fundamentals of Software Testing :

Testing is basically a process to detect errors in the software product. Before
going into the details of testing techniques one should know what errors are. In
day-to-day life we say whenever something goes wrong there is an error. This
definition is quite vast. When we apply this concept to software products then we
say whenever there is difference between what is expected out of software and
what is being achieved, there is an error. For the output of the svstem, if it differs
from what was required, it is due to an error. This output can be some numeric or
alphabetic value, some formatted report, or some specific behavior from the svstem,
In case of an error there may be change in the format of out, some unexpected
behavior from svstem, or some value different from the expected is obtained. These
errors can due to wrong analvsis, wrong design, or some fault on developer’s part.

All these errors need to be discovered before the svstem is implemznted at the
customer’s site. Because having a system that does not perform as desired be of no
use, All the effort put in to build it goes waste. So testing is done, And it is equally
important and crucial as any other stags of svstem development, For different tvpes
of errors there are different types of testing techniques. In the section that follows
we'll try to understand those techniques.

Objectives of Testing : First of all the objective of the testing should be clear.
We can define testing as a process of executing a program with the aim of finding
errors. To perform testing, test cases arc designed. A test case is a particular made
up aruficial situation upon which a program is exposed so as to find crrors. So a
good test case is one that finds undiscovered errors. [f testing is done properly, it
uncovers errors and after fixing those errors we have software that is being developed
according to specifications.

Test Information Flow : Testing is a complete process, For testing we need
two types of inputs. First is software configuration. It includes software requirement
specification, design specifications and source code of program. Second is test
configuration. It is basically test plan and procedure. Software configuration is

170 System Design Concepy °

required so that the testers know what is to be expected and tested whereas ey
configuration is testing plan that is, the way how the testing will be conducted og
the system. It specifies the test cases and their expected value. It also specifies if
any tools for testing arc to be used. Test cases are required to know what specific
situations need to be tested. When tests are evaluated, test results are compared
with actual results and if there is some error, then debugging is done to correct the
error. Testing is a way to know about quality and reliability. Error rate that is the
occurrence of errors is evaluated. This data can be used to predict the occurrence of

errors in future. Expected
Resuls

Comections

incorporated

Emors into software
Debugging| ™

Evaluation

Testing
Input to testing Testing Results

Error rate data

{used o predict the
reliability, i.e. Future
occurrence of error)

Fig. 1 : Testing process

Test Case Design : We now know, test cases are integral part of testing. So we
need to know more about test cases and how these test cases are designed. The
most desired or obvious expectation from a test case is that it should be able to find
most errors with the least amount of time and effort. e

A software product can be tested in two ways. In the first approach only the
overall functioning of the product is tested. Inputs ars given and outputs are checked.
This approach is called black box testing. It do¢s not care about the internal
functioning of the product.

The other approach is called white box testing. Here the internal functioning
of the product is tested. Fach procedure is tested for its accuracy. It is more intensive
than black box testing. But for the overall product both these techniques are crucial.
There should be sufficient number of tests in both categories to test the overall
produet. :

2. White Box Testing:

White box testing focuses on the internal functioning of the product. For this |

different procedurcs are tested, White box testing tests the following
® Loops of the procedure
® Decision points
® Exccution paths

Testing and Quality Assurance

171
- For performing white box testing, basic path testing technique is used. We will

« illustrate how to use this technique, in the following section.

2.1. Basis Path Testing :

Basic path testing a white box testing technique .It was proposed by Tom
MGC?bC- 'I'Il_m tcslls Buarantee 1o execule ¢very statement in the program at least
one time during testing. Basic set is the set of all the execution path of a procedure

Flow graph Notation : Before basic path procedure is discussed. it is Important |

* to know the simple notation used for the representation of control flow. This notation

is known as flow graph. Flow graph depicts control flow and uses the following |
constructs.

Until |

o—0 GO0 !

Fig. 2 : The structured constructs in the now graph form
These individual constructs combine together ¢ ‘
o s sether to produce the flow graph for a
Basic terminology associated with the flow graph is
Node: Each flow graph node represents one or more procedural
Each node that contains a condition is called a predicate node.

Edge: Edge is the connection between two nodes. The edge
B - s between nodes
represent flow of control. An edge must terminate at a node, even if the node doz;
not represent any useful procedural statements,

-

statements.

172 System Design Concept
Region: A region in a flow graph is an arca bounded by edges and nodes.
Cycelomatic complexity: Independent path is an execution flow from the stan

point to the end point Since a procedure contains control statements, there are various

execution - paths depending upon decision taken on the control statements. Sg

Cyelomatic complexity provides the number of such execution independent paths,

Thus it provides a upper bound for number of tests that must produced because for

cach independent path, a test should be conducted to see if it is actually reaching

. the end point of the procedure of not.

Cyclomatic Complexity : Cyclomatic Complexity for a flow graph is computed
in one of three ways:

1) The numbers of regions of the flow graph correspond te the Cyclomatic
complexity.

2) Cyelomatic Complexity, V(G), for a flow graph G is defined as V(G) = E-
N # 2) where E is the number of flow graph cdges and N is the number of flow
graph nodes. '

3) Cyclomatic complexity, V(G). for a graph flow G is also defined as V(G)=
P +1 where P is the number of predicate nodes contained in the flow graph G.

Fig. 3 : Cvclomatic Complexity

Testing and Quality Assurance 173

- Example: Consider the following flow graph
Region, R=6
- ‘Number of Nodes = 13
. Number of edges = 17
Number of Predicate Nodes = 5
Cyclomatic Complexity, V(C) :
V(C)=R=86;
© Or %
V(C) = Predicate Nodes + I
=3+1=6
Or
V(C)= E-N+2
=17-13+2 =6
Deriving Test Cases : The main objective of basic path testing is to derive

the test cases for the procedure under test. The process of deriving test cases is
following

1. From the design or source code, derive a flow graph,

2. Determine the Cyclomatic complexity, V(G) of this flow graph using any of
the formula discussed above,

Even without a flow graph, V(G) ean be determined by counting the number
of conditional statements in the code and adding one to it.

3. Prepare test cases that will foree execution of cach path in the basis set.
Ezach test case is executed and compared to the expected results.

Graph Matrices : Graph matrix is a two dimensional matrix that helps in
determining the basic set. It has rows and columns each equal to number of nodes
n flow graph. Entry corresponding to cach node-node pair represents an edge in
flow graph. Each edge is represented by some letter (as given in the flow chart) to
distinguish it from other edges. Then each edge is provided with some link weight,
01 there is no connection and [if there is connection. For providing weights each
letter is replaced by 1 indicating a connection. Now the graph matrix is called
connection matrix. Each, row with two entrics represents a predicate node. Then
for cach row sum of the entries is obtained and I is subtracted from it. Now the
value so obtained for cach row is added and I is again added to get the cyclomatic
complexity,

Once the internal working of the different procedure are tested, then the festing
for the overall functionality of program structure is tested. For this black box testing
techniques are used which are discussed in the next section,

174 System Design Coneepy
3. Black Box Testing :

Black box testing test the overall functional requirements of product. Input are
supplied to product and outputs are verified. If the outputs obtained are same as the
expected ones then the product meets the functional requirements. In this approach
internal procedures are not considered. It 1s conducted at later stages of testing,
MNow we will look at black box testing technique. &

Black box testing uncovers following types of errors.

1) incorrect or missing functions

2) interface errors

3) external database access

4) performance errors

5) Initialization and termination errors,

The following techmgques are employed durning black box testing

3.

—

. Equivalence Partitioning :

In equivalence partitioning, a test case is designed so as to uncover a group or
class of error. This limits the number of test cases that might need to be developed
otherwise. Here input domain is divided into classes or group of data. Thase classes
are known as equivalence classes and the process of making equivalence classes is
called equivalence partitioning. Equivalence classes represent a set of valid or mvalid
states for input condition.

An input condition can be a range, a specific value, a set of values, ora boolcan
value. Then depending upon type of input equivalence classcs is defined. For defining
equivalence classes the following guidclines should be used.

1. If an input condition specifies a range, one valid and two invalid equivalence
classes arc defined.

2. If an input condition requires a specific value, then one valid and two invalid
equivalence classes are defined

3. If an input condition specifics a member of a set, then one valid and one
invalid equivalence class arc defined.

4. [f an input condition is Boolean, then one valid and one invalid equivalence
class arc defined.

For example, the range is say, 0< count < Max I 000. Then form a valid
equivalence class with that range of vaiues and two invalid equivalence classes, one
with values less than the lower bound of range (i.e., count < 0) and other with values
higher than the higher bound (count= 1000).

3.2. Boundary Value Analysis :

It has been observed that programs that work correctly for a set of values in an
equivalence class fail on some special valucs. These values often lic on the boundary
of the equivalence class. Test cases that have values on the boundarics of cquivalence
classes are therefore likely to be error producing so selecting such st cases for
those boundzries is the aim of boundary value analysis.

Testing and Quality Assurance 195

In boundary value analysis, we choose input for a test ease from an equivalence

" class, such that the input lies at the edge of the equivalence classes. Boundary

values for each equivalence class, including the equivalence classes of the output,
should be covered. Boundary value test cascs are also called “gxtreme cases™.

‘ Henee, a boundary value test case is a set of input data that lies on the edge or
poundary of a class of input data or that generates output that lies at the boundary of
aclass of output data. ’

In case of ranges, for boundary value analysis it is uscful to select boundary
elements of the range and an invalid value just beyond the twa ends (for the two
invalid cquivalence classes. For example, if the range is 0.0 <= x <= 1.0, then the
test cases are 0.0, 1.0 for valid inputs and -0. 1 and 1.1 for invalid inputs.

For boundary value analysis, the following suidelings should be used: -

1. For input ranges bounded by a and b, test cases should include values a and
b and just above and just below a and b respectively.

‘2. If an input condition specifies a number of values, iest cases should be
developed to exercise the minimum and maximum numbers and values Just above
and below these limits,

) 3. If intemal data structures have prescribed boundaries. a test case should be
designed to exercise the data structure at its boundary.,

4. Strategies towards Software testing

) Now we know how the testing for software product is done. But testing software
is not an casy rask since the size of software developed for the various svstems is
often too big. Tzspng needs a specific systematic procedure, which should -gu ide the
tester in p\:rfo‘rmmg different tests at correct time, This svstematic procedure is
isting strategies, which should be followed in order to test the system developed
thoroughly. Performing testing without some testing stratcg\-r would be very
aimbersome and difficult. Testing strategics are discussed in the part two of this
chapter which now follows.

Dﬂ?:\":lﬂpcrs are under great pressure to deliver more complex software on
:ru:n:a_snmly ageressive schedules and with limited resources. Testers arc expected
to verify 1hc_ quality of such software in less time and with even fewer rcsou.rccs In
such an environment, solid, repeatable, and practical testing methods and auwmat-iou
arc a must

Ina soﬁ}me development life cyele, bug can be injected at any stage. Earlier
the bu_gs are identified, more cost saving it has. There arc different techniques for
deteeting and eliminating bugs that originate in respective phase,

Software testing strategy integrates software test case design techniques into
awell- planned serics of steps that result in the successful construction of software
Any test strategy intx_:rpuraic test planning, test case design, test execution, and IJ](;
resultant data collection and evaluation.

176 System Design Coneept

Testing is a set of activities. These activitics 50

: ! planned and conducted
systematically that it leaves no scope for rework or bugs, '

Various sm:_twam—l.csting strategies have been proposed so far. All provide 3
template for testing. Things that are common and important in these strategies-arg

_Tcsling begins at the module level and works “outward” : tests which ari
cami_nd out, are done at the module level where major functionality is tested and
ther it works toward the integration of the entire system.

Different testing techniques are appropriate at different points in time: Under
different circumstances, different testing methodologies are to be used which will
be the decisive factor for software robusiness and scalability. Circumstance
essentially means the level at which the testing is being done (Unit testing, svstem
testing, Integration testing etc.) and the purpose of testing.

The developer of the software conducts testing and if the project is big then
there is a testing team: All programmers should test and verify that their results are
according to the specification given to them while coding. In cases where programs
are big enough or collective effort 1s involved for coding, responsibilities for testing
lies with the team as a whole.

Debugging and testing are altogether different processes. Testing aims to finds
the errors whereas debugging is the process of fixing those errors. But debugging
should be incorporated in testing stratcgies

A software strategy must have low-level tests to test the source code and high-
level tests that validate system functions against customer requircments.

Verification and Validation : Verification is a process to check the deviation
of actual results from the required ones. This activity is earried oui in a simulated
environment so that actual results could be obtained without taking any risks.

validation refers by the process of using software in a live environment in
order io find errors. The feedback from the vallidal.ion phase gencrally produces
changes in the software to deal with bugs and failures that are uncovered. .

Validation may continue for several months. Durning the course of validating
the svstem, failure may occur and the software will be changed. Continued use may
pmd;;q-,c acditional failures and the need for still more changes.

Planning for Testing : One of the major probIcrp before tcstin_g is while
planning, Because of natural reasons a developer would like to declarcf his program
as bug free. But this does not essentially mean that the programmer himself §huu Id
not test his program. He is the most knowlcfigcahlc person with context his own

ram. Therefore, he is always responsible for testing the 1nd|wdua_1 units
EEE f the program. ensuring that cach module performs the function for
(T?d;!ci:az designed. In many cases, the developer also conducts integration lesting-
:I::;Li:;; step that leads to the construction (and testing) of the complete program

structurc. |

Testing and Quality Assurance

177

an Independent Test
) thoroughly. Both the
for testing. First developer should

Only after the software architecture is complete does
Group (ITG) become involved. ITG test the product very
developer and ITGs should be made responsible :
test the product afier that ITG can doit. In this case since the developer knew that
m?!e are other people who will again test their product they’ll conduet tests
m.;gbl:l ai.:qwn developer and ITG work together, the product is tested thoroughly

Testing Strategies : Once it is decided who'll do testing then the main issue is
how to go about testing. That is in which manner testing should be performed. As
shown in fig. 4 first unit testing is performed. Unit testing focuses on the indivi&uu
modules of the product. After that integration testing is performed. When modules
are integgrated into bigger program structure then new errors arise often, Integration
testing uncovers those errors. After integration testing, other high order tests like
system tests are performed. These tests focus on the overall svstem. Here svitem is
treated as one entity and tested as a whole. Now we’ll take up these different types
of tests and try to understand their basic concepts.

[Other high order tests

Integration testing

Unit testing

Sequence of test

Fig. 4 : Sequence of tests
5. Unit Testing:

We know that smallest unit of software design is a module, Unit testing is
performed to check the functionality of these units it is done before these medules
are integrated together to build the overall system, Since the modules are small in
size, individual programmers can do unit testing on their respective modules. So
unit testing is basically white box oriented Procedural design descriptions are used
and control paths are tested to uncover errors within individual modules. Unit testing
can be done for more than one module at a time,

The following arc the tests that are performed during the unit testing:

Module interface test: here it is checked if the information is properly /lowing
mto the program unit and properly coming out of it.

Local data Structures: these are tested to sce if the local data within unit
{modnle) is Stored properly-by them.

178 System Design Concept

Boundary Conditions: It is observed that much software often fails at boundary
conditions. That’s why boundary conditions are tested to ensure that the program is
properly working at its boundary conditions, ”

Independent Paths : All independent paths are tested to see that they are
properly executing their task and terminating at the end of the program.

Error Handling Paths: These are tested to check if errors are handled properly
by them. See fig. 5 for overview of unit testing. :

Module (One Unit)

Intarface

Local data structure
Boundary condition
Independent paths
Errar handling paths

Teast cases Results

Fig. 5 : Unit test

Unit test procedure

Driver Module

Fig. 6 : Unit test Procedure
Unit testing begins after the source code is developed, reviewed and verified
for the correct svatax. Here design documents help in making test cases. Though
each module performs a specific task vet it is not a stand-alone program. It may
need data from some other module or it may necd to send some data or control
information to some other module. Since in unit testing cach module is tested
individually, so the need 1o obtain data from other module or passing other module
is achieved by the use of stubs and drivers. Stubs and drivers are used to simulate
those modules A driver is basically a program that accept test case data “and passcs
that data to the module that is being tested. It also prints the relevant results. Similarly
stubs are also programs that are used replace modules that are subordinate to the
module to be tested. It does minimal data manipulation, prints verification of entry,
and returns. Fig. 6 illustrates this unit test procedure.
Drivers and stubs are overhead because they are developed but are not a part
of the product. This overhead can be reduced if these are kept very simple,
Once the individual modules are tested then these modules are integrated to
form the bigeer program structures. So next stage of testing deals with the errors

Test cases

Testing and Quality Assurance 179

* that occur while integrating modules. That's why next testing done is called
*'integration testing, which is discussed next.

6. Integration Testing :
Unit testing ensures that all modules have been tested and each of them works

'pmpcrly individually. Unit testing does not guarantee if these modules will work

fine if these are integrated together as a whole system. It is observed that many
errors crop up when the modules are joined together. Integration testing uncovers
errors that arises when modules are integrated to build the overall system.

Following tvpes of errors may arise:

Data can be lost across an interface. That is data coming out of a module is not
going / into the desired module.

Sub-functions, when combined, may not produce the desired major function.

Individually acceptable imprecision may be magnified to unacceptable levels.
For example, in a module there is error-precision taken as +- 10 units. In other
module same error-precision is used. Now these modules are combined. Suppose
the error precision from both modules needs to be multiplied then the error precision
would be +-100 which would not be acceptable to the system.

Global data structures can present probiems: For example, in a system there is
a global memory. Now these modules are combined. All are accessing the same
global memory. Because so many functions are accessing that memory, low memory
problem can arise.

Integration testing is a svstematic iechnique for constructing the program
structure while conducting tests to uncover errors associated with interfacing. The
objective is to take unit tested modules, integrate them, find errors, remove them
and build the overall program structure as specified by design,

There are two approaches in integration testing, One is top down integration
and the other is bottom up integration. Now we'll discuss these approaches.
6.1. Top-Down Integration :

Top-dowr: integra_tion is an incremental approach to construction of program
structure, In top down integration, first control hicrarchy is identified. That is which
moduh': is driving or controlling which module. Main control module, modules
su'bordmal.e to and ultimately subordinated to the main control block are integrated
to csﬂo:nc bigger structure, For wtegrating depth-first or breadth-first approach is
used.

In depth first approach all modules on a control path are integrated first. See
if's 7. Here sequence of integration would be (MI, M2, M3), M4, MS, M6, M7, and

In breadth first all modules dircetly subordinate at cach level are integrated

together. Using breadth first for fig. 6 the sequence of i i
M2, M8), (M3, M6), Md, M7, andgMS. e L

180 :
System Design Concept

:
| M7 |

Fig. 7 : Top down integration

Another approach for integration is bottom up integration, which we are going
to discuss now,

6.2. Bottom-Up Integration :

Bottom-up integration testing starts at the atomic modules level. Atomic
modules are the lowest levels in the program structure. Since modules are integrated
from the bottom up, processing required for modules that are subordinate to a given
level is always available, so stubs are not required in this approach.

A bottom-up integration implemented with the following steps.

1. Low-level modules are combined into clusters that perform a specific
software sub function. These clusters arc sometimes called builds.

2. A driver (a control program for testing) is wrntten 1o coordinate test case
input and output.

3. The build is tested.

4. Drivers are removed and clusters are combined moving upward in the
program structure.

Fig. 8 shows the how the bottom up integration is done. Whenever a new
module is added to as a part of integration testing, the program structure changes.
There may be new data flow paths, some new 1/0 or some new control logic. These
changes may cause problems with functions in the tested modules, which were
working fine previously.

To detect these errors regression testing is done. Regression testing is the re-
exceution of some subset of tests that have already been conducted to ensure that

Testing and Quality Assurance 181

changes have not propagated unintended side effects in the programs. Regression

testing is the activity that helps to ensure that ¢ (due to testi
d hanges test fi
reason) do not introduce undesirable behavior or additional cnm-s.mg PRSSIEEER

b
Z Jssni0

—

¥
Cluster 1
(b)
Fig. 8 : (a) Program Modules (b) Bottom-up integration
applicd to program modules in (a)

182 System Design Concept

As integration testing proceeds, the number of regression tests can grow quite
large. Therefore, regression test suite should be designed to include only those tests
that address one or more classes of errors in each of the major program functions.
It is impractical and inefficient to re-execute every test for every program functions

once a change has occurred.

7. Validation Testing :

After the integration testing we have an assembled package that is free from
modules and interfacing errors. At this stage a final series of software tests, validation
testing begin. Validation succeeds when software functions in a manner that can be
expected by the customer.

Major question here is what are expectations of customers, Expectations are
defined in the software requirement specification identified during the analysis of
the system, The specification contains a section titled *“Validation Criteria”” Information
contained in that section forms the basis for a validation testing.

Software validation is achicved through a series of black -box tests that
demonstrate conformity with requirements. There is a test plan that describes the
classes of tests to be conducted. and a test procedure defines specific test cases
that will be used in an attempt to uncover errors in the conformity with requirements.

After cach validation test case has been conducted, ane of two possible
conditions cxists.

(1) The function or performance characteristics conform to specification and
are accepted, or

{2) A deviation from specification is uncovered and a deficiency list is created.
Deviation or error discovered at this stage in a project can rarcly be corrected prior
to scheduled completion. It is often necessary 1o negotiate with the customer to
establish a method for resolving deficiencies.

7.1. Alpha and Beta Testing :

For a software developer. it is
use a program. Instructions for use may be misinte
data may be regularly used; and the output that seemed clear to the
unintelligible to a user in the field.

When custom software is built for onc customer. a series of acceptance Lests
are conducted 1o enable the customer tc validate all requirements. Acceplance test
is conducted by customer rather than by developer. It can range from an informal
“test drive” to a planned and systematically exccuted serics of tests, In fact,

eacceptance testing can be conducted over a period of weeks or maonths, thereby
uncovering cumulative errors that might degrade the system over time

If software is developed as a product to be used by many eustomers, it is
impractical to perform formal acceptance ests with cach one. Most software preduct
builders use a process called alpha and beta testing to uncover errors that only the
end uscr seems able to find,

difficult to foresee how the customer will really
rpreted; strange combination of
tester may be

10

TL'Slng and Qun.li[y Assurance 183

wd';uslomcr condl_.lcrs the alpha testing at the developer’s site. The software is
used in a natural setting with the developer, The developer records errors and usage
problem. Alpha tests are conducted in a controlled environment.

e m'l';‘cvbeta test is conducted at one or more customer sites by the end user(s) of
Boftware. Here, developer is not present. Therefore, the beta test is a live -
application of the software in an environment that cannot be controlled by the

devlr:hpcr. The customer records all problems that are encountered during beta

testing and reports these to the developer ai regular intervals. Because of problems

reporied during beta test, the software developer makes meodifications and then

prepares for release of the software product to the entire customer base.

8. System Testing :

Soft.wzllrc is only onc_clnmcnt of a larger computer-based system. Ultimately,
mﬁwarp is !.ﬂCO:I’]JUrﬁHﬂWJT]I other svstem elements and a senies of svstem intr;gra!iéﬁ
a.nd_ vahfla!ton tests are conducted. These tests fall outside the séopc of software
engineering process and are not conducted solely by the software developer

Svstem testing is actuallv a seri i ' .

3 5 es of different tests whose primary pu i
. Y sC
to fully exercise the our_npurer-bamd svstem. Although cach test has : d:;‘c:;w;::'
:::drp'osc,r all “ﬁrk &\fcnf}' that all system elements have been properly jmcgmmd-
perform allocated functions. [5 i 1 i "
g 15, In the following section, different svstem 1esls are
8.1. Recovery Testing :
wiu'_Many compultcr-t:a_sed systems must rceover from faults and resume operation
in & pre-specified time. In some cases, a system may be fault tolerant: that i -
processing faults must not cause overall system function to cease. In Olhn:r.ca.:: -
. 5. a

system faillure must be corrected withi - -
: within a specified period 8 s
damage will occur. s Or Severc economic

Recovery testing is a svstem tes s the ; .
wavs and verifies that mw‘fm. i pr;;r:if;mrf;;:.}:;ﬁt:\t}::: ot:o Fa-|l m a varicty of
(performed by system itself), re-initialization mechanisms, data m;;‘::;r:,s :::;Dmamd
;’;iﬂ::;vt.;h:l@ for correctness. If the recovery requires human intervent mt:rf

spaur is evaluated 1o determine whether it is within acee g

8.2, Stress Testing : B

Stress tests are desi I :]
situations. Stress testing mi':‘?ﬁ‘; :i;ﬂ-r::-litn ?mr f:::[c!c::ns ‘;“h abnormal !
abnormal quantity, frequency, or volume. For example, (1) s ma,-:]s S
designed _tlmr generate 10 interrupts are seconds, when onc orpecm oy e
rate; (2) input data rates may be increased by an order of ma ir:l::j l-s L s
how input functions will respond; (3) test cases that require rl‘f_:u'm € to determine
otln:r_ resources may be executed; (4) test cases that may cause ex O X
for disk resident data may be created; or (3) test cases that may m-‘lfcﬁ;:e hl_' nting
a virtual operating system may be designed. The testers ﬂﬂﬁ[lp(mbrmic u:;:wg in

ram,

134 System Design Concept

8.3. Security Testing :

Any computer-based system that manages sensitive information or causcs
actions that can harm or benefit individuals is a target for improper or illegal
penetration

Security testing attempts to verify that protection mechanism built.into a system
will protect it from unauthorized penetration, During sccurity testing, the tester plays
the role of the individual who desires to penetrate the system. The tester may attack
the system with custom software designed to break down uny defenses that have
been constructed; mav overwhelm the svstem, thereby denying service to others, may
purposely cause system errors, hoping to find the key to system entry; and so on.

Given enough time and resources, good security testing will ultimately penctrate
a svstem. The role of the svstem designer is to make penctration cost greater than
the value of the information that will be obtained in order to deter potential threats.

9. Role of Quality in Software Development : _ ;
Till now in this chapter we have talked about_ the testing of the system. Tcsu_ng:
is one process 1o have a error free svstem but it is o_n.ly a small part o.f. l.h-: quality
iviti i : for achieving the good quality and error
assurance activitics, which are employed eving i
free svstem. We have not vet talked about quality of system pr::»du.u:\?,:imgus;1 Il).
enforcement is very impaortant in systerm development. In ilh.l.s psllrt we :.lis v :)I:
we can apply quality factors in oqur tc::j produce a quality system. Here mainl
software system and quality 15 considered, . .
We employ software to solve and simplif_\'_ our rca}-hfc |leb!<:m'sJi a:dl “; 3?:2
without saving that it should be of high class 1.&. quality ;\Oﬁ“arﬁ;ﬂit:assuranf.e
frware q-;alin' and it’s assurance come into the picture. SO \astrv:ﬂl‘qW ¥ ass e
?: an umbrella activity, which must be applied throughout the software enguny
55 » .
IJ“m:lilm this leads us to fow questions such as how to dcspzt?:ca:; m l\:-:;:
g i ith respect to software. Henee 1t becomes n_su }c,, i g
e Mb ic do's and don'ts o be taken carc of during the cc_mrsr.o softwa ;
s _sclrn9€ o lied thoroughly will lead to 2 rcaso_nablc quality software ?nm
Cyclt‘-‘ which 1| :l?;nm.'mg dofinition of software quality 51a(est (_:Ol'lﬁ:ln‘lmol.wd
s N ':t:d. functional and performance requirements, explicitly d°°““"=f'} i
explicitly stai ds and implicit charactcrislics_ that are cxpected of a
development standards D B mitions spoak a volume about
pmfcssti.tm:altgf &L::l?p::;ks:i(more simple for our understanding we can focus on
the matter,

i 1 below.
e :l“:?c requirements have 1o be met by_tm ncwl}.- developed system and
e !:a £ conformance in them will be serious quality lag
thus any Iac_ = dards define a development criteria which di slpln-_vs the 1-|_1:mn.?:1rh
2 Spu]flﬁc:l:f:rc is enginecred. Any deviation from the given enicrna wi
h the s

in whie -
result into lack of the quality.

1

Testing and Quality Assurance

185

str zht, llmncst and frank the client may be but
plicit requirements which are not mentioned but

3. Mo matter how much vocal, strai
then there are always a sct of im
they should be met.

The dominant nature of the software market
application.areas are continually emerging along wi
New methods of information processing and new programming environments have
created a dilemma in management of software development. For software developers
whatever they produce, it must be sold in order to survive in this dynamic software
industry. Aleo these companies should always try for corlli.nuous-impmvcment in
quality.

For quality, Software Engineering Institute C arneg
Pennsylvania has devised a quality model known as Capa
CMM. This model is based on the principles of Total Quality Management (TOM)
for improving the entire software development process. The goal of CMM is that a
firm’s process capability is reflected to the extent to which it plans for and monitors

software quality and customer satisfaction. As organizaitons grow, software project
management practices are adequately utilized and software development underzoss
a more refilled process. In CMM . the process capability of a company is understood
in five advancing maturity levels, a bricf overview of them is given below:

is its dynamic growth, New
th birth of new technologies.

ie Mellon University,
bility Maturity Model

LEVEL | : Initial - processes are not adequately defined and documented.

LEVEL 2 : Repeatable - implementation of project management tools.

LEYEL 3 : Defined - all projects use an organized, documented and
standardized set of activitics that are implemented throughout the project life cyvele.

LEVEL 4 : Managed - Specific process and quality outcome measures are
implemented,

LEVEL 5 : Opumized - Continuous process improvement is adopted in the
entire organization, Sophisticated methods of defect prevention, technology changes
management and process change management is implemented

The CMM has become tool to evaluate the potential of an organization to
achieve high quality in software development Each s/w company should aim to
achieve high CMM level.

Software Quality Factors : Till now we have been talking siw quality in
gereral. What it means to be a quality product. We also looked at CMM in brief We
need to know various quality factors upon which quality of a s/'w produced is
evaluated. These factors are given below.

The various factors, which influence the software. are termed as software
factors. They can be broadly divided into two categorics. The classification 1s done
on the basis of measurability. The first category of the factors is of those that can be
measured directly such as number of logical errors and the secend category clubs
those factors which can be measured only indirectly for example mantamability but

186
the each of the factors are to be measured to check for the content and the quality
control. Few factors of quality are available and they are mentioned below;
Correctness - extent to which a program satisfies its specification and fulfills
the client’s objective.
Reliability - extent to which a program is supposed to perform its function
with the required precision.
Efficiency - amount of computing and code mqui.rcd by a program to perform
its function,
Integrity - extent to which aceess to software and data is denied o unauthonzed
users.
Usability- labor required to understand, operate, prepare input and interpret
output of a program.
Maintainability- effort required to locate and fix an error in a program,
Flexibility- effort needed to modify an operational program.
Testability- cffort required to test the programs for their functionahey.
Portability- effort required to run the program from one platform to other or
to different hardware.
Reusability- extent to which the program or it’s parts can be used as buillding
blocks or as prototypes for other programs.
Interoperability- effort required to couple one sysu:m to another.
Mow as you consider the above-mentioned factors it becomes very obvious
that the measurements of all of them to some discrete value are quite an impossible

task. Thercfore, another method was evolved to measure out the quality. A set of
matrices is defined and is used to develop expressions for cach of the factors as per
the following expression

Fq=Cl*Ml+ C2*M2 + ,..... ..Cn*Mn

where Fq is the software quahh factor, Cn are regression cocfficients and Mn
is metrics that influences the quality factor. Metrics used in this arrangement is
mentioned below.

Auditability- casc with which the conformance to standards can be verified,

System Design Concept

Accuracy - precision of computations and control

Communication commonality- degree to which standard interfaces, protocols ¢
and bandwidth are used

Completeness- degree 1o which full Jmp]cmcnl.ahon of functionality required
has been achieved,

Conciseness- program’s compaciness in terms of lincs of code,

Data commonality - usc of uniform design and documentation techmgques
throughout the software-development.

12

Testing and Quality Assurance

|
i
i
!
i

187
Data commonality- use of standard data structures and types throughout the

. program,

Error tolerance - damage done when program encounters an error.
Execution efficiency- run-time performance of a program.

Expandability - degree to which one can extend architectural, data and
procedural design.

Pontability
Reusability
Interoperability
Usaility

Efficiency
Integrity
Testablity

Flexible

> | Correctness

X | Reliability
> | Maintainability

Audit ability
Accuracy

Communication X
Commonality X

Completeness X| X
Complexity X X
Concision x| X X X
Data commonality X| X X
Error tolerance X X
Execution efficiency % X X

E

»

Expand ability
Generality X
H/w independence X X X
Instrumentation
Modularity e
Operability X
Security b4

Self documentation
Simplicity

Fig. 9 : Quality factors and metrics

158

- System Design Conce
. Hﬂrl_:lwarc independence- degree :
1ts operating hardware.

Instrumen!atiu = Pree. whie] o on
n dcl—. ce. to which the monitors 15 oW ratiog
¥ : program ope i
and identifies errors that do occur. I s

to which the software is de-coupled From

Modularity- functional independence of program components
Operability- case of programs operation, l

Security- control and protection o o
x rotection of pr
B cors. programs and database from the

Self-documentation- de: i meanin:
: gree o which the source cod i i
documentation. - e i

. Simplicity- degrce to which a program is understandable without much
difficulty. Software svstem independence degree to which program is independent
of nonstandard programming language features, operating system characteristics
and other environment constraints, ’

Traceability- ability to trace a design representation or actual program
component back o mitial objectives,

Training-degrec to which the software is user-friendly to new users.

There are vanous “checklists” for software quality. One of them was given by
Hewlett Packard that has been given the acronym FURPS - for Func:tionalil\-,
Usability. Reliabilinv Performance and Supportability.

Functionality 1s measured via the evaluation of the feature set and the program
capabilitics. the gencrality of the functions that are derived and the overall security
of the svstem

Considering human factors. overall aesthetics, consistency and dozumentation
assesses usability

Reliability 15 fizured out by evaluating the frequency and severity of failure,
the accuracy of output results. the mean time between failure (MTBF), the ability
to recover from faulure and the predictability of the program.

Performance is measured by measunng processing speed, response time,
resource consumpuon. throughput and efficiency.

Supportability combines the ability to extend the program, adaptability,
serviccability or in other terms maintainability and also testability, compatibility,

figurability and the case with which a system can be installed.

Software Quality assurance : Software quality assurance is a serics of planned,
svstematic sequential actions that enable the quality of the software produced
L_isuali\' all software development units have their own SOA team

This SQA team takes carc of the quality at the high end that is the overall
product and at the lower order the quality 15 the sole responsibility of the individual

who may Cnginecr. revicw and test at any level

13

Testing and Quality Assurance 189
Continuous
Improvement
Software
CQuality
Software
Development Life
Cvcle Applicatio of
= TGQM Philosophy

Fig. 10 : The adoption of the philosophy of Continuous Improvement
in the software development life cycle.

Software quality has 10 be a characteristic of the software produced and thas
it is designed into it rather than to be imposed later. [tis the duty of every individual
in the software development team that quality is maintained ¢ven before some formal
quality assurance procedures are applied. This practice cag ipprove the quality of
ali the software produced by the organization.

10. Activities Involved :

Software quality assurance clubs together various tasks and activitics. There
are seven major activities namely application of technical metheds, conducting of
Formal Technical Reviews (FTR). software- testing, control of change, measurement
and record keeping and reporting.

SQA starts early along with the process of software development. It is initiated
with the help of technical methods and tools that enable the analvst to achisve a
high quality specification and help the designer to develop a high-quality design.
We can always point out these measures of specification and design qualty and
once this is done then both the specifications (or the prototype) and the design are
individually checked for quality

FTR is emploved for this purpose and by its means the members of the technical
staff undergo a meeting to identify the quality problems. Many-a-times reviews are
found to be equally effectve just as the testing of uncovering defects in software.
The next step in the software tesung w hich inveolves a scries of test case design
methods to cnable effective error detection. It is believed that the soﬂwn.re_ festing
can dig out most of the errors but practically as the fact goes no matier how ngorous
the testing may be it 1s unable to uncover all the errors, Some €rrors remain
uncovered. Henee we have to look up to other measures also but this should not
dimimish the importance of software testing

Application of formual and systematic standards and procedures vary ﬁ"—‘cﬂ;

project to project and company to company. Either the standards arc self-impos
in the whole of the software enincering process by the software development feam

190 System Design Concept

or they are carried out as per the client’s dictation or as a regulatory mandate. If
formal ic. written, well documented standards arc not available then it becomes
imperative to initiate an SQA activity so that the standards are complied with. Also
an assessment of this compliance must be regularly undertaken either by the means
of FIR or as an SQA group audits which the team may do on its own,

Mothing bothers the whole of the software engineering process more than the
changes. Any and every change to software will almost incorporate an error or
trigger side effects that will propagate errors. The ill influence of changes can vary
with pature of the change and it also depends at which stage they are to be
incorporated. Early changes are much less harmful than the ones, which are taken
into design at a later stage. This is so because any change in the specification or the
design will demand a re-lav out of all the work done so far and n the subsequent
plans. Hence the importance of a well-defined specification and detail design are
again highlighted. Before the coding starts these designs are to be freezed and all
the software development process after the detail design takes the design skeleton
as the base on which the software is built. Therefore both the client and the software
development team should be sure of the design developed before they freeze it and
the process goes to the next step. Any doubts or requests should be taken into
account then and there only. Any further request to add new features from the client
will lead to changes n the design and it will result in more effort and time
requirements on the software development team’s behalf. Needless to add, this wall
invariably result in the increase in the software cost. Hence to minimize these offects,
change control process activity is used. It contributes to the software quality by
formalizing the requests for change by evaluating its nature and also controlling its
impact. Change control is applied during software development and also latzr during
the maintenance phase
Measurement is such an activity that it cannot be separated from any engincering
discipline as it is an integral part of it. So it comes into action here also. Software
metrics is used to track software quality and to evaluate the impact of metho fological
and procedural changes. These metrics encompass a broad array of technical and
management oriented measures.

Records are usually developed, documented and mai d for refi
‘purposes. Thus record keeping and recording enable the collection and distnbution
of SQA information. The documents of reviews, results of FTR, audits. change
control, testing and other SOA activitics become a part of the project and can be
referred by the development staff on a need to know basis.

We now know various activitics involved in quality assurance activity. Mow
we’ll take one activity at a time and look into it in detal.
10.1. Application of Technical methods :

There are two major objectives to be achieved by employing technical methods,
firstly the analyst should achicve a high quality specification and the designer should
develop a high quality design.

14

Testing and Quality Assurance 191

Firstly we will take up the specification part. There is no doubt on the fact that
a complete understanding and clarity of software requirements is essential for the
appropriate and suitable software development. No matter how well designed, well
coded but a poorly analyzed and specified program will always be a problem for
the end-user and bring disappointment to the developer.

The analyst plays the major role in the requirements analysis phase and he
must exhibit the following traits...

“The ability to grasp abstract concepts, reorganize into logical divisions and
synthesize “solutions” based on each division.

The ability to absorb pertinent facts from conflicting or confused sources.

The ability to understand the user/client environment.

The ability to apply the hardware and/or software system elements to the user/
client environments.

Software requirements must be uncovered in a “top-down” manner. major
functions, interfaces and information must be fully understood before successive
layers of detail are specified.

Modeling : During software requirements analysis, models of the svstem to
be built are created and these models foeus on what the svstem must do and not on
how it has to do. These models are a great help in the following manner....

The model aids the analyst in understanding about the system’s function,
behavior and it’s other information thus making the analysis task casier and
systematic.

The model is the standard entity for review and it 15 the kev to determing
cempleteness, consistency and accuracy of the specification.

The model is the base/foundation for the design and thus it serves as the
representation of the software that can be “mapped” into an implementation context.

Partitioning : Quite often problems ar¢ too large and complex to be grasped
as a whole and then it is very reasonable to partition/divide them into smaller parts
so that they individually become much casizr to understand and i the end one can
establish interfaces between the parts so that the overall function can be
accomplished. During the requirement analysis the information, funetional and
behavioral domains of software can be partitioned.

Specification Principles : Specification methods irrespective of the modes
via which they arc carricd out are basically a representation process. Requirements
are represented in such a manner that leads to successful software implementation.
Blazer and Goldman proposed cight principles of good specification and they are
given as follows

1. Separate functionality from implementation: As per the definition, the
specification is a description of what is desired rather than how it is to be realized/

Y
192 System Design Concept
umplemented. S]Jtzciﬁca‘uion can have two forms, The first form is that of mathematical
functions in \Ivluch_as per the given set of inputs a particular set of outputs is produced.
In such specifications, the result to be obtained is entirely expressed in a what rather
than how form. Thus ghe result is the mathematical function of the input,

2. A process-oriented systems specification language is required: Here we will
take up the sccond frm of the specification. In this situation the environment is
dynamic and its changes affcct the behavior of some entity interacting with the
environment. This is similar to the case or embedded computer system. Here no
mathematical function can express the behavior. To express the same we have to
use process-oriented description in which the what specification is expressed by
specifying a model of the required behavior in the terms of functional responses to
various inputs from the environment. Now such kind of process-oriented
specifications, which represent the model of the system behavior, have been usually
excluded from the formal specification languages but one can not do without them
if more compiex dynamic situations are to be expressed.

3. A specification must encompass the system of which the software is a
component. Interacting components make up a system. The deseription of cach
component is only possible in the complete context of the entire system therefore
usually a system can be modeled as collection of passive and active components.
These objects are interrclated and their relationship to cach other is time-variant,
Stimulus to active objects or agents as they are called are given by the dynamic
relationships and to these the agents respond which may further cause changes to
which agan the agents respond.

4. A specification must encompass the environment in which the system
operates. Similarly, the environment in which the svstem operates and with which
it interacts must be specified.

10.2. FTR (Formal Technical Review) : .

The FTR is a softwarc.quality assurance activity with the objectives to uncover
errors in function, logic or implementation for any rcpfcscmatinn of the software;
to verify that the software under review meets its requirements; to cnsure that the
software has been represented according to predefined sta:nd::.rds; to achicve software
that is developed in a uniform manner and to make projects more manageable.

FTR is also a leaming ground for junior developers to kmw more about different
approaches to software analysis, design and implementation, [t also serves as a
backup and continuity for the pcoplc'who are not exposed to the software

development so far. FTR activities include walkthroughs, inspection and round

robin reviews and other technical asscssments, The above-mentioned methods are
different FTR formats. -
Review Meetings : Review meeting is important form of FTR and there are
» gssential paramgters for the meeting such as there should be reasonable number
Z(t)'npl:rsons conducting the meeting and that too after cach one of them has done his/

15

Testing and Quality Assurance 193

her homework i.e. some preparation and the meeting should not be carried out very
long which may lead to wastage of time but rather for duration just cnough to chum
out some constructive results. FTR is effective when a small and specific part of
the overall software is under scrutiny. It is easier and more productive to review in
small parts like each module one by one rather than to review the whole thing in
one go. The target of the FTR is on a component of the project, a single module

The individual or the team that has developed that specific module or product
intimates the product is complete and a review may take place. Then the project
leader forwards the request to the review leader who further informs the reviewers
who undertake the task. The members of the review meeting are reviewers who
undertake the task. The members of the review meeting are reviewers, review-
leader, product developers {or the module leader alone) and there one of the reviewers
takes up the job of the recorder and notes down all the important issues raised in the
meeting.

At the end of each review meeting the decision has to be taken by the attendees
of the FTR on whether to accept the product without further medification or to
reject the product due to severe errors or o accept the product provisionally. All
FIR attendees sign off whatever decision taken. At the end of the review a review
issues list and a review summary is report is generated.

10.3. Software Tgsting

SQA is incomplete without testing and testing is carried out 10 venfy and
confirm that the software developed is capable enough to implement, carry out the
tasks for which it has been developed. Tests carried should be able to determine
any previous undetected errors that might hamper the smooth functioning of the
system. There are two different approaches to it. First is the classroom testing where
we test and retest the program until they work but in our business environment a
more professional approach is taken where we actually trv to make the programs
fail and then continue testing until we cannot deliberately make them finl any more
Henee the abjective is to take care of all possible flaws so that no null, void, vague
case or doubt remains before it is installed at the client’s site. The data used for
testing can either be an artificial or mock data when the system is mew or it can be
taken from the old system when a new system has replaced it. The volume of data
required is very high for adequate testing. This is because all the data used may not
be able to mirror all the real situations that the system will encounter later. Testing,
is such an important stage in the software development that usually 30% of the
software development cycle time is dedicated to it

10.4. Control of Change

During the development of software product. changes are difficult to avoid.
There is always a need for some change in the software product. Though lh;sc
changes must be incorporated into software product. but there should be a specific
procedure that must be followed for putting the changes in the product. Before a
change is implemented, the required change should be thoroughly analvzed, recorded

194 System Design Concept

and reported to people who are responsible for controlling them for quality and
errors. For all these activities there is software configuration management (3CM).
It is applied throughout the software engineering process as changes can occur at
any stage of software development. SCM activities identifies and control changes
and ensures that these changes arc properly implemented.
A typical change control process that is followed in many software development
process is illustrated in fig 11 -
Need for charge is recognized
User submils change request
Developer evaluates
Change Repor is generated

Change contral_ authority decides

Request is queried for action, ECO generated
Individuals assigned Lr configuration ohjeclsl User is informed
Configuration objects {items) “cheeked out”
Change made
Change reviewed (audited)
Configuration items that have been changed “checked in”
Baseline for testing established
Quality assurance ant testing activities performed
Changes for inclusion in next release (revision) “promoted”
Appropriate version of software rebuilt
Change to all configuration items reviewed (audited)
Changes included new version :
Mew version distributed
Change request denied Usar informed
Fig. 11 : Change Control Process

First thing is need for changg is recognized and request of change is sub_rnirl;ed.
Developers analyze the request and makes a change report and it is submitted to
change control authority. It is up to the authority to grant permission or deny request.
In case change request is denied, the user is informed about it. If pcqnisswn is
granted then an Engincer Change Order (ECO) is generated which contains details
of the changes to be made. The individual software engineer is assigned the
configuration object that requires change. These objects are taken out of system,
changes are made upon them and finally changes arc reviewed and again they are

16

Testing and Quality Assurance 195

put into system.

Testing: strategy is fina)ized. Quality assurance and testing activities are
performed. Changes done to the system are promoted. New version of software is
built. Changes made to the software product are again reviewed and finally the new
version with the required changes is distributed.

There are two more activities in SCM. These are ‘check in” and ‘check out’ .
processes for access control and synchronization control.

" Access control determines which software engineer has the authority to change
and modify a configuration object. More than one software engineer call have the
authority over a particular object. Access control is very important it is not advisable
to grant access to objects to evervone. Then everybody can make changes to the
object

Synchronization controls the parallel changes, done by two or more developers.
It ensures one developer is not writing over the work of the other developer. Fig. 12
shows access and synchronization control. It shows wherever there is a need 10
change some obiject, it is given to software engineer who have access to that object.

Configuration object
(modified version),

Configuration object
(modified version)

Audit Info

Software
engineer

ACCRES

Project
Contral

database

Configuration object
{extracted version)

Configuration object
(baselined version)

Fig. 12 : Aceess and synchronization control
Onee it is assigned to a software engineer for change then it is locked for other
software engineers who might also have access for it. This process is checkout for
that object. The software engineer modifies the object and it is reviewed. It is then
cheek in. That lock that has been put on the object is unlocked and can be given to

196 H
Svystem Design Concept

oth.c-._r software engineers if required. In this way there is no chance of one developer
wrting over the work of other developer,

10.5. Measurement ;

_Earligr in our course we discussed what is the objective and meaning of the
quality with respect to software development. We defined a set of qualitative factors
of the software quality measurement. Since there is no such thing as absolute
knm:i_.‘leci:gc We can’t expeet to measure software quality exactly. Therefore SQ
metrics 1s developed and employed to figure out the measure, ::,onu':m of the quality.
A set of software metrics is applied to the quantitative assessment of software quality.

In all cases these metrics use indirect measures therefore quality as such in itself is
never measured but rather some manifestation of it.

There are a number of software quality indicaters that are based on the
measurable design characteristics of a computer program.

Design structural quality index (DSQI) is one such measure. The following
values must be ascenained 1o compute the DSQI

S' = the total number of moduies defined in the program architecture

S. = the number of modules whose correct function depends on the source of
data input or that produces data to be used elsewhere {in general control modules
(among others) would not be counted as part of 5.}

S, = the number of modules whose correct function depends on prior processing

S4 = the number of database items (includes data objects and all atnbutes that
define objects)

5, = the 1otal number of unique database items

S, = the number of databasc segments (different records or individual objects)

§_ = the number of modules with a single entry and exit (exception processing
is not considered to be a muluple exit)

When all these values arc determined for a computer program, the following
intermediate values can be computed:

Program structure: D, where D, is defined as follows:

If the architectural design was developed using a distinct method (e.g., data
flow-oricnted design or object oricnted design), then D, = 1 otherwise D, = 0.

Module independence: D, = 1 -(5./5)

Module not dependent on prior processing: D, = 1- (5,/5,)

Databasc size: D, = 1-(5./5)

Database compartmentalization: D, = 1- (5,/S)

Module entrancefexit charactensuc: D, = 1- (5./S,)

17

Testing and Quality Assurance 197

With the intermediate values determined, the DSQI is computed in the foIIowiﬁg
manner;

DSQ! = LW D,

Where i = 1 to 6, W, 1s the relative weighting of the importance of each of the
intermediate values, and LW, = | (if all D, are weighted equally, then W_ = 0.167).

The value of DSQI for past designs can be determined and compared to a
design that is currently under development. If the DSQI is significantly lower than
average, further design work and review is indicated. Similarly, if major changes
are to be made to an existing design, the effect of those changes on DSQI can be
calculated.)

[EEE Standard 9%2.1-198% suggests a software maturity index (SMI) that
provides an indication of the stability of a software product (based on changes that
occur for each release of the product). The following information is determined:

MT = the number of modules in the current release

F, = the number of modules in the current release that have been changed

F, = the number of modules in the current release that have been added

F, = the number of modules from the preceding release that were deleted in
the current release '

The software maturity index is computed as:
[MT- (F +F +F)]
SMI = e
MT

As SMI approaches 1.0. the product begins to stabilize.
1¢.6. Record Keeping and Reporting :

Record keeping and reporting are another quality assurance activities. It is
applied to different stages of software development '

During the FTR. it is the responsibility of reviewer (or recorder) to record all
issues that have been rased,

At the end of review meeting, a review issue list that summarizes all issucs, is
produced. A simple review summary report is also compiied,

A review summary report answers the following questions,

1. What was reviewed?

2. Who reviewed it 7

3. What were the findings and conelusions” -

Fig. 13 shows a sample summary report. This becomes an important document
and may be distributed o project lcader and other interested partics.

198 System Design Concepy Testing and Quality Assurance

Technical Review Summary Report
Review idontification: .
Project. XX X00 Review Mumber : X-00012
Date: 11th July' 1996 Location: Old Bldg, Room# 4
Time: 10:00 AM
Product identification " Very Short Questions:
Material Reviewed : Detailed Design module for penatty collection : i
Producer: Gargi . 1. What is testing ?
Brief Description : Penalty collection module for books returned after 2. What is test case 7
due date. g
Matarial Reviewed: (note each item separately) 3. Name different types of testing ?
1. Penalty rules 4 What is FTR ?
Review Team: Signature : eLis :
1. Ashisn (Leader) 5. ‘What is bug ?
2. Vikram (Recorder) :
3. Magender Short Questions:
Product Appraisal:
Accepted: as is () with mingr modifications () z
Mot Accepted: major revision () minor revision () L. What arc fundamentals of software testing ?
Review Mot completed. (Explanation follows) 2. Define Endurance Testing 7
Supplementary material attached: :
Issue fist {) Annotated Materials () 3. What do you mean by validation and Verification ?
Other (descrite) 4. What do vou mean by Integration testin 7
Fig. 13 : Technical review summary report. 5. What 1s test driver and test stub ?
The review issue list serves the following purpose. : ¥
1. To identify problem areas within the product. Long Question :
2. To serve as an action item checklist that guides the producer as corrections 1 g Wh) .
; g at do you mean by Quality Assurance ? Di it s i
g “"‘d" . .) evelopment, : E ? Discuss it's role in software
Flgﬁi:i:f‘:l;::w o K10 2. What is System testing ? Discuss all type of System Testing
fiew T 3. What i i 2 b ‘ :
Date of Review - 07-07-98 at is the difference between white box & black box testing ?
Review leader : Ashish Recorder : Vikram 4 What do you mean by integration testing ?
ISSUE LIST 5. Write Short Note on -
1. Penalty rules ambiguous. The penalty rules are not clear. Needs (a) Verification and Validation
more clanty. (b) Whitc Box and Elack Box Testing
Review team recommends a modification in the penalty rules (c) Top down 3 . 5 :
module. ! P Integration and Bottom-up integration,

— - (d) Unit Testing
Fig. 14 : Review issues list © S\'stém Testi

It is important to establish a follow-up procedure to ensurc that items on the ® R' rd '_'g

issue list have been properly corrected. i ecord Keeping System
‘Review issue list provides the basis for the follow-up procedure to be carried (g) FTR (Formal Technical Review)

out. After the follow up procedure, review issue list can be used to cross-check the

corrections made. Once all this is done and review findings arc incorporated, the

quality of the system is cnsured. This is how various techniques and procedures : Qoo

may be used for delivering a quality system to the vendors. I ¥

18

10

DOCUMENTATION
IMPLEMENTATION AND MAINTENANCE

e

(———“-\Ob. =
> jectives
”
1. Implementation Phase

1.1. Task and Acuvities
|.2. Role and Responsibilities :
1.3. Deliverables, Responsibilities and Action
1.4. Issucs for Consideration
1.5. Review Activity
. Documentation
2.1. What documentation does :
22, What documentation helps who_.’ :
23 Who benefits from documentation?
3 sntation and Traming .
’ ?.?ug;:incmation and Training Duri_n,g System Annlh;\ms
32 Documentation and Traiming Dur;ng Swstem Dcs;lg‘,n e
3 3. Documentation and Training During System lmp. ementati
3.4. Documentation and Training During System Operations
4. Operations and Maintenance Phase
4.1 Tasks and A:‘Liwt-c;h_] :
.5 and Responsilitics .
j%\ ?)Z:T:crablcs. Responsibilities and Action
4.4, Issues for Consideration
k 4.5, Review Activity

(]

mentation Phase : . . ‘ .
- ITP::':: phase, the system or system madifications are installed and ms3
n E t y y

oduction environment. The phase is intiated after the system bﬂ
s ed by the user. Activities in this phasc include notification
sers. execution of the previously defined training plan, e
pletion of sccurity certification and accreditation and pd

operational
been tested and accept
implementation to end u
entry or conversion. com|

19

pocumentation Implementation and Maintenance 201

implementation cvaluation. This phase continues until the system is operating in
production in accordance with the defined user requirements.

The new system can fall into three categories, replacement of a manual process,
replacement of a legacy system, or upgrade to an existing system. Regardless of the
type of system, all aspects of the implementation phase should be followed. This will
ensure the smoothest possible transition to the organization's desired goal.

1.1. Tasks and Activities :

The following activities are performed as part of the implementation phase. A
description of these tasks and activities is provided below.

Notification of Implementation : The implementation notice should be sent
to all users and organizations affected by the implementation Additionally, it is
good policy to make internal organizations not directly affected by the
implementation aware of the schedule so that allowances can be made for a
disruption in the normal activities of that section. The notice should include:

& The schedule of the implementation:

* A brief synopsis of the benefits of the new system;

& The difference berween the old and new svstem:

* Responsibilities of end user affected by the implementation during this phase:
and

® The process to obtain system support. including contact names and phone
numbers.

Execution of Training Plan : It is always a good business practice to provide
training before the end user uses the new svstem. Because there has beena previously
designed training plan established. complese with the svstem user ranual, the
execution of the plan should be relatively simple. Typically what prevents a plan
from being implemented is lack of funding., Good budgeting should prevent this
from happening.

Data Entry or Conversion : With the implementation of any system, typicaliv
there is old data which is to be included in the new svstem. This data can be in a
manual or an automated form Regardless of the format of the data, the tasks in this
section are two fold, data input and data verification. When replacing a manual
system, hard copy data will need to be entered into the automated system. Some
sort of verification that the data is being entered correctly should be conducted
throughout this process. This is also the casc in data transfer, where data fields in
the old system may have been entered inconsistent Iy and therefore affect the integrity
of the new database. Verification of the old data becomes imperative to a useful
tomputer system,)

One of the ways venfication of both svstem operation and data integrity can
be accomplished is through paraliel operations. Parallel operations consists of
unnming the old process or system and the new system amultaneously until the new
system is certified. In this way if the new svstem fails in any way, the operation can
proceed on the old system while the bugs are worked out.

202 System Design COIlE:ﬂ

Install System : To ensure that the system is fully operational, install the
system in a production environment.

Post-Implementation Evaluation : After the svstem has been ficlded, 3
post-implementation evaluation is conducted to determine the success of the project
through its implementation phase. The purpose of this evaluation is to documen
implementation experiences to recommend svstem enhancements and provide
guidance for future projects. In addition, change implementation notices will be
utilized to document user requests for fixes to problems that may have been
recognized during this phase. It is important to document any user request for 3
change to a system to limit misunderstandings between the end user and the system
programmers

Review Previous Documentation : During this phase, the documentation
from all previous phases will be finalized to align it with the delivered system. The
Project Manager coordinates these npdate activitics.

1.2. Roles and Responsibilities :

Project Manager: The project leader 1s responsible and accountable for the
successful execution of the Implementation Phase. The project leader is responsible
for lecading the team that accomplishes the tasks shown above,

Project Team: The project team members (regardless of the orgamzation of
permanent assigiument) are responsible for accomplishing assigned tasks as directed
by the Project Manager.

Procurement Officer: The Procurement Officer is responsible and accountable
for preparing solicitation documents under the guidance of the project manager.

Oversight Activities: Agency oversight activitics, including the IT office,
provide advice and counsel for the Project Manager on the conduct and requirements
of the Implementation Phase. Additionally, oversight activities provide information,
Judgments, and recommendations to the Agency decision makers during project
reviews and in support of project decision milestones.

1.3. Deliverables, Responsibilities and Action :

The following deliverables are completed during the Implementation Phase:

Delivered System : After the Integration and Test Phase is completed and all
documents are approved, the system - including the production version of the data
repository - is delivered to the customer for the Operations and Maintenance Phase.

Change Implementation Notice : A formal request and approval document
for changes made during the Implementation Phase.

Version Description Document : The primary configuration control document
used to track and control versions of software released to the operational
environment, It is a summary of the featurces and contents for the software build and
identifies and describes the version of the software being delivered.

20

Documentation Implementation and Maintenance 203

Post-Implementation Review Report : This report 1s creaied at the end of
the Implementation Phase. It is conducted to ensure that the system functions as

. planned and expected: to verify that the system cost is within the estimated amount;
- and to venfy that the intended benefits are derived as projected.

1.4. Issues for Consideration :

Implementation represents the culmination of many threads of activity within
the project. As the Project Manager pulls them all together, it's important not to
overlook critic activities that are not directly associated with the technology
implementation, such as: '

* Execution of the communications strategy and plan to ensure all participants
understand their roles and the objectives of each implementation activity.

= Effective delivery of user training.

Close management of the data conversion process and products.

e Change management and data venification to ensure that users develop trust
in the system’s producis as early in the process as possible. ’

Rigorous documentation of all activities.

1.5. Review Activity :

A post-implementation review shall be conducted to ensure that the svstem
functions as planned and expected; to verify that the svstem cost is within the
estimated amount; and to verify that the intended benefits are derived as projected.
Normally, this shall be a one-time review, and it occurs after a major implementation;
it may also occur after a major enhancement to the svstem. The results of an
unacceptable review are submitted to the Agency for review and follow-up actions.

During the Implementation Phase Review, recommendations may be made to
correct errors, iImprove user satisfaction or improve svstem performance. For
contractor development, analysis shall be performed to determine if additionai
activity is within the scope of the statement of work or within the original contract.
2. Documentation :

It is a truth universally acknowledged, that software documentation is a Good
Thing and described what they had seen in the way of good practice for financial
modelling systems: “Acceptable standards of documentation were established,
agreed by the firm, and themselves documented. ™ They went on to say “The standards
of control and documentation applicable to systems developments,

But what is documentation for? It seems to be more or less assumed that all
documentation is worth while, and the more documentation the better. However,
given that most financial models are developed wath limited resources, and wniting
documentation takes time, it’s important to consider what forms of documentation
are most useful and productive. In order to do this we must think about what we are
trying to achieve through the production of documentation.

204

System D{:sign Cmﬂ}

2.1. What Documentation Daes ;
Documentation may do any of the following:
Specify the intended working of the document
Record what was done
Explain how the document works
Instruct the user how to use or update the document

ldeally, a documentation servin

I v, : 2 all four purposes. A specification ma
anything Fr_om a single sentence to a separate, long, documcnI:,mDucumantaﬁit':
l,l;l_'lally easier to understand if it is written for a single purpose. It really helps a user
thinstructions are written (and labelled) as instructions, rather than buri deep i
the record of a change. . “ e =

2.2. What Documentation Helps who? -
_Thcrc is no type of documentation that is always useless to any type of user,
but in general some types are more useful than others. The following table

summarizes the general utility of the different types of documentation to different
users:

Specify Record Explain Instruct

Viewer X

Player

Taster

Changer

Developer

Auditor

Table 1 : The table can form the basis of a useful checklist when reviewing the
presence and adequacy of documentation,

Specify : A fairly abstract level of specification is useful to everybody: “This
document models the effect of nflation on sales™ for example. Some users need
rather more detail than that: a Changer or Developer needs full details of the
theoretical model that should be uscd, so that they can implement it, and a Tester
needs those details so that they can see whether it has been implemented. You can't

21

" Documentation Implementation and Maintenance 205

tell whether a decument is doing the right thing unless you know what the right thing
is. Even a Viewer or Player may need to know the theory behind the document so
that they can interpret the results,

Record : A record of what was done is especially useful to an Auditor, but is

* also helpful to Changers and Developers, who may need to work out why things are

going wrong. However, a record is rarely a good substitute for either explanation or
instruction. Recording documentation may be a simple narrative of steps taken, or
a more formal record of versions, changes made, reviewers, tests performed, and so

~ on. Information about the sources of data or parameters may count as cither recording
_or explaining documentation.

Explain : Explanations of how the document is put together, or why specific
design decisions were made are usually primarily intended for Changers and
Developers, but are also useful to Auditors. Explanations of the sources of data or
parameters may be useful for all users. A simple narrative of “what [did when
building this document™ is rarely useful as an explanation, especially as any
information it gives may be superseded later on in the narrative. Explanations of
the significance of outputs are useful to all users, especially Viewers or Changers
who may not have the skills necessary to infer what is going on from the formulae
or code.

Instruct : Instructions may be directed at any type of user. They are especially
important for Viewers and Players, who may not always be able to infer what should
be done from the structure or code in the document itself.

Forms of Documentation : Documentation may take many different forms:

« A separate document is often used for long, formal specifications that are -
themselves subject to review and sign-off. Records of changes and versions may
also be kept in a separate document or database. The potential disadvantage of a
separate document is that it may be difficult to maintain consistency between the
documentation.

» Implicit documentation is widely used. The names of worksheets, ranges
and cells, and modules and variables in VBA code come into this category.
Formatting may also provide documentation, for example if colours are used
consistently to indicate which cells are inputs, or to indicate potential errors.

o Documentation within the code is perhaps the mest common form. It i_s
particularly easy to use in document (compared to other types of software) as it
often simply takes the form of text in cells. [t is well suited to instructions and some
types of explanation, as it can be placed close to the cells to which it refers.

« Documentation as a separate block in code, for example as a separate
waorksheet, can be very useful, especially for keeping records.

e Documentation in the user interface overlaps with documentation within
the code for document, but is clearly distinct in more conventional Mm. It
includes text in user forms, text boxes and other images.

206 Svstem Design Concept
The most appropriate documentation method depends on the type of
documentation and the user for which it is intended. as well as the culture in which
it will be used. If your team commonly uses separate documents or centralized
systems for specific types of documentation, then vou should conform to the common
practice. L
2.3. Who Benefits from Documentation? :
Just about everybody benefits from clear, accurate documentation. The benefits
of out of date documentation written without a specific purpose in mind are less

obvious, and indeed are often nonexistent. To get the most out of documentation,
the following should be true:

® It should be written specificaliy as specification, record, explanation or
instruction. That way it will be easy for the reader to understand.

e It should be easily available to anybody who wants it; this often (but by no
means always) means that it should be part of the document that it applies to.

e It should be kept up to date, otherwise it might mislead the reader.

* When writing documentation, it is often helpful to bear in mind the specific
tvpe of user for whom vou are writing.

It 1s not only the reader who benefits from documentation. The writer often
gains a lot, too: if the writer is a developer, writing some of the documentation in
advance can help to focus the mind and prevent false starts. Articulating vour ideas
can save vou from many dead ends. The documentation process can often throw up
bugs in the document or ambiguities in the specification. especially if the writer is
a user other than a developer of the document.

Appropriate documentation will help people other than the developer have
confidencz in the results of a document. They will be to able to tell what the
document is intended to do, how it does it, what data it uses, how to use it and
interpret the results, and what tests and reviews have been performed.

3. Documentation and Training :

Decumentation and training should be undertaken through all phases of the
systems cevelopment life evele. The phases of the evele are systems analysis,
systems Jdesign, implementation, and operation. The benefits of crfective
documentation and training throughout the life cycle include obtaining the support of
top management, gaining the aceeptance of middle-management users. and creating
a more durable product.

The systems development life cvele is generally described as four phases of
activity: analysis, design, implementation and operation. The tasks require the
collection. organization, and analysis of information about the old system and the
proposed new system. They involve developing new ideas and procedures, Most
difficult of all. the design of a new system requires change (which often generates
resistance and fear) and an urgent need to communicate the concepts and dztails of
the new svstem to those who must use it and who are most affected by it

-_—

22

Documentation Implementation and Maintenance 207

Documentation and training are an cffective means of communicating
information. Communication is needed among members of the development team
and also between the development team and users who will ulimately aceept or
reject the new system. Yet, unfortunately the functions of documentation and training,
uscful when communicating information, are often not considered part of the
development cycle and thus are neglected or postponed until after the systems
development process has been essentially completed

Documentation and training are also necessary for the ongoing education of
systems support staff and users once the system has entered production. Without
this knowledge, maintenance and medification is incfficient and scmetimes
inadequate, and users are unable to use the production system to its maximum
potential As the system ages, important details are forgotien and the full power of
the system is lost.

To correct these conditions, training and documentation should not be discrete
activitics undertaken only at the conclusion of the svstems development ife cvele.
Instead, they must begin at project inception and continue into system operation,
Good training and documentation help ensure the support of the system by senior
management, its acceptance by user middle management, its usc by staff, and
ultimately the development and maintenance of a more enduring product

Effective cxecution of the documentation and training functions requires that
these tasks be addressed in all phases of the systems development cyvcle, not Just at
the end. Further, it requires assignment of responsibility for these functions to a
professional for whom this is a primary responsibility. This documentation
coordinator/systems trainer must be a person with strong communications and
interpersonal skills who has an understanding of the business problerns being
addressed, as well as the technology emploved in their resolution.

3.1. Documentation and Training During Systems Analysis :

During systems analysis. the coordinator/trainer can increase user awarcness
and help document business activitics, needs, and objectives. Early projeet success
can be ensured by establishing channgls of communication with the user cornmunity.

Communications can increase the understanding of the business issucs and problems
that will be addressed by the future system.

An cffective vehicle for improving communications and increasing, project
awarcness in the user community is the project newsletter. Throughout the project
life eyele. the newsletter can keep the broad user community informed of project
orientation, decisions, and status, Serving as an “early wamning svstem,” the
newsletter encourages user mput during planning and analysis and provides the
following information.

(1) The identity of the project and management

(2) Definition of the problems that will be addressed by the project team

(3) Definition of the systems, files and databases that may be affected

208 System Design Concept

(4)The identity of members of the user community assigned to work on the
project.

One of the major tasks in systems analysis is the documentation of existing
business and systems activities and problems. Documenting the old system presents
the opportunity for the coordinator/trainer to become acquainted with the processes
and problems that will be addressed during development.

Experience in the user area also makes the coordinatorftrainer a valuable
information resource. During svstems analysis the coordinator/trainer can develop
an understanding of system and business functions which will help define later
training needs and audiences.

At the conclusion of svstems analysis, the documentation coordinator/trainer
can assist in preparing the report to senior management, The report should identify
business and svstems problems, performance requirements, scope and costs/benefits
of development. By including the report, or an abstract of it, in a project newsletter,
a larger audience can be introduced to the new system, and the process of “selling™
the svstem can begin.

3.2. Documentation and Training During Systems Design :

Systems design requires decisions effecting the choice of hardware, software
and manual resources to be used in developing the new system. Usually at this
stage, a choice must be made between buying or building the system. The buy
decision involves the coordinator/trainer in the evaluation of vendor documentation
and training: the build decision involves the coordinator/trainer in the design of
user interfaces to support business functions and the design of the help function
and online documentation.

The Buy Decision. The buy decision begins with the evaluation of vendor
software. All requests for proposals should include questions related to the
availability and quality of documentation and training. Development of these
questions is the responsibility of the coordinator/trainer. Questions on training and
documentation addressed during the initial selection process can be general and
designed to eliminate candidates who arc definiiely unsuitable. Some questions
related to training and documentation follow.

Training: Docs vendor provide training? Tvpes 91’ lrainiug.{'ltlasslroom, scIlF-
study, computer assisted)? At vendor location? Onsite? 1s traiming included in
licensing agreement”? Number of hours? Number of _caursus'.’ qubcr of s::lf—sr.uqy
guides” Interactive training programs? Cost of addiional traiming not included n
licensing agreement?

Documentation: ls documentation available? System documentation” Program
documentation? User documentation? Cost of additional copics of documentation?

After narrowing the field of candidates, detailed evaluation of training and
documentation begins. During detailed evaluation the coordinator/tramer attends

23

Documentation Implementation and Maintenance 200

vendor training sessions; performs a review of all training materials and documentation:
and participates in software testing.

Attendance at vendor training sessions provides the coordinator/trainer with
the opportunity to evaluate the quality of classroom instruction and nstructional
materials. The systems trainer can determing whether:

(1) Classes are scheduled at intervals and locations that will meet the needs of
the user. (2) Instructional materials are interesting, logically organized and address
the needs of specific user groups. (3) Qualified instructors are used in all classes.
(4) Sufficient time is provided to address problems that may be unique to individual
users. (5) [nstructors or other qualified individuals are available to answer questions
that arise after the conclusion of the class.

The coordinator/trainer and other members of the project team also review
supplementary instructional matenals, self-study guides and computer assisted
instruction. When evaluating the contents of self- study guides, the systems trainer
considers whether: ’

(1) Use of self-study matenals is appropriate. (2) Organization of the guides is
clear, logical and oniented toward the solution of business problems. (3) Learming
objectives are clearly stated and users are frequently tested on their understanding
of the materials.

If computer assisted instruction is available, the svstems trainer exercises these
programs to determine whether:

(1) Programs are fully documented and designed for users with no prior
experience with software. (2) The organization and presentation of instructional
materials 15 ¢lear and logical. (3) Users have the abality to terminate, without
completing the session, and to return later. picking up where they have ieft off. (4)
Learning is regularly asscssed with the system providing additional review and
problems, if remedial work is required.

The coordinator/trainer also assesses the usability of documentation. Members
of the project team who have used thé documentztion are an exeellent source of
information for the coordinator/trainer about the accuracy of technical decumentation
and its ease of understanding. On the basis of these opinions, the coordmator/trainer
provides an overall assessment of its organization, its understandability and ease of
Use.

On-line documentation and help facilitics are also useful. As with any other
documentation, the coordinator/trainer should evaluate it considering whether:

(1) Online help and documentation are available from all locations in the system.
(2) The system supports more than one level of user help, accommodating both
general and specific function documentation. (3) Entry into and exit from the help
and documentation functions is quick and easy. (4) Instructions used to access the
help function are casy to understand and remember. (5) Information provided in

210 System Design Concepy
vendor developed on- line documentation can be understood by the business user,
(6) On-line documentation and help arc easily modified and maintained.

The Build Decision. A build decision engages the coordinator/trainer maore direetly
in product design. Definition of business functions and supporting business activities
drive the design of the system, as well as the design of the training,. In this process
business activities are associated with the system activitics that will be used in their
support. Subsequently related system activities can be grouped in logical units and
user access menus defined, The coordinator/trainer, working with system designers,
can design these user access interfaces, Other responsibilities of the coordinator/
trainer in this phase include the development of user instructions for the new system,
and design of on-line help and documentation. A logical, well-organized system thar

is also user friendly will enhance system use and understanding as well as serve as
the basis for user-oriented training

A common. problem associated with the systems analysis phase of project
development is the lack of communication with user areas throughout the
organization. Manyv designers tend 1o work wath a limited group of key users, and
focus their atention upon the system. This car leave many users without adequate
knowledge of the new svstem or the opportunity to provide potentially valuable
input. Again, the importance of the project newsletter cannot be overemphasized.
While all users may not be actively engaged in the evaluation or design process,
they should be kept abreast of decisions and project status. The newsletter can
communicate results and direction. In addition, management information sessions
to inform the user community of basic design decisions and address questions and
concerns about the project can enhance the exchange of information between user
management and svstems developers, [nformation sessions are an effective precursor
to formal training. familiarizing the audience with basic design concepis and
approaches.

3.3. Documentation and Training During Systems Implementation :

During svstems implementation, the coordinator/trainer provides lminin,gl o
audicnces in the user community develops or tailors on-line help and documentation
functions, and eompiles systems, program and user documentation. How cach of
these tasks is accomplished is largely determined by three factors: the buy or build
decision, audience location and size; and tvpe of software. When software is
purchased. the vendor frequently provides training classes and materials. If these
classes fulfill user requirements, the coordinator/trainer functions primarily as an
administrator, scheduling classes and enroliing users in them. On the other hand, if
training materials or instruction provided by the vendor proves to be inadqualm.
the tramer tailors or develops educational matenals and conducts in-house training
SESSI0NS,

Audience size and location and the types of software can drive the decision to
supplement vendor training materials and conduct in—hou_s:: scs-sions.llf thrf audmrlmc
is large and traming has to be repeated on multiple occasions at multiple sites, using

24

Documentation Implementation and Maintenance

211

al cost savings. The type of
degree to which traming materials may have to be tailored.
Users of the utility software, including Lotus 1-2-3, can be trained primarily in the
software functions (often using vendor material), because it is expected that users
will recognize the application of these utilities to their specific business problems,
On the other hand, users of applications-oriented software, including general ledger,
accounts payable, accounts receivable and payroll systems, often require training
that is tailored to the support of their unique business activities,

The development of tailored, in-house training for use with a purchased package
is a time consuming and complex task. In-house development of training starts
with the definition of user groups, a review of their functions and related activities.
Working together, designer, trainer and user can map business activities to the
purchased system activities that will be used to support them. Definition of training,
modules can be the result of this mapping process. Svstem activities that support
related business activities should be addressed in the same training modules.

The decision to build a system brings with it the commitment to build the
training. The building of a system presents the opportunity to structure software
and training so that it reflects the system activitics,

During design, system activities that support related user business activitics
should be identified. Subsequently related system activities can be grouped so that
they can be accessed through common user menus. The svstems trainer, as part of
the project team, should be actively engaged in the definition of these menus and
their contents, In a well-designed system, user menus can serve as the logical basis
for the development of user-oriented training modules

an in-housc trainer to conduct classes results in substanti
software dictates the

Training Programs : Typically, three levels of audiences require instruction
in the system and its capabilities. Overview sessions are developed for managers in
order to acquaint them with the functionality available in the system and how it can
be used in their specific areas. Classes for first-line supervisors, which incorporate
hands-on instruction, are designed to acquaint supervisors with menus, screens,
help functions, user documentation and user controls. The third level of instruction
focuses upon the needs of the direct user audicnce. These sessions are hands-on
and employ “real life examples™ throughout the class. This level should provide the
participants with the opportunity to exercise the system and understand how it will
be used in solving their business problems. A hands-on approach to instruction
encourages system use in the controlled environment of the classroom. To enable
all users to attend training, multiple small sections of the sams class should be
scheduled. This flexible scheduling enables all system users to attend class without
disrupting their personal schedules or work: activities, Training should occur close
to the time when the system becomes available in the user arca, because practice on
the svstem helps reinforee procedures leamed in class.

The project newsletter plays an important role in the training program. The
newsletter can publish desenptions and schedules for user classes, and detailed

212
System Design Concept

G'."'U"f_m:“l pfﬂchttms, The newsletter can also serve as a training vehicle. By
:;po:'lrmg Ic_)n project progmsa_; and major project-related decisions, it describes system

nctionality tp a broad audience. Although it may be difficult for user management
to attend traditional classes, they can become acquainted with system functions
through well-chosen “articles” presented in the project newsletter.

Whether the system is built or bought, the coordinator/trainer may be called
upon to develop user-oriented on-line help and documentation functions. The on-

line help Function supplements training information and is a substitute for additional
documentation.

Information, supplied in the on-line help function, should be expressed in terms
that the user can understand, and should support information requirements at different
levels of detail

During systems implementation, the coordinator/trainer also compiles
documentation. With purchased software, this can entail the establishment of a
documentation library to house master copies of systems, program and operations
documentation. If the software is modified in any way. fully documented changes
should be added to the library. Software written in-house imposes additional demands
for the development of documentation. In most large companies, documentation
standards have been defined. It is the responsibility of the coordinator/trainer to see
that these standards are met and that documentation for these svstems is complete
properly organized and maintained.

3.4. Documentation & Training Considerations During Sys. Operations:

Adaptation of the new systems environment often brings the reassignment of
the coordinator/trainer. All too often, this transfer means that formalized training in
the svstem has ended and that documentation, aithough now complete, will not be
mmaintained. The department that is designated as the “owner” of the system should
assume these responsibilitics. To ensure a smooth transition to the new “owner™
arca. the coordinator/trainer must provide for a continuation of this function, This
means identifving individuals in the owner area who will be avanlable to mamtain
documentation and to continue classes, as necessary. over the life of the system. The
new coordinators/trainers must become familiar with all instructional materials and
system operations. If there is constant tumover in the user departments, cla;scs in
system use will be required at regular intervals. The “owner” department coordinator/
trainer must provide class instruction and maintain instructional materials and user
amntenance of other documentation, such as systems. program and
operations manuals, is done by the systems mainienance arca. Rn.gl.llaz audits off]lc
user arca and system maintenance ﬁmclio_n help ensure the integrity of production
svstem instruction. documentation and maintenance procedurcs
4, Operations and Maintenance Phase: .

More than half of the life cyc]c_ costs are attributed to the operations and
maintenance of systems. In this phase, it 1s essential that all facets of operations and

documentation. M

25

Documentation Implementation and Maintenance 213

maintenance are performed. The system is being used and scrutinized to ¢nsure that
it meets the needs initially stated in the planning phase. Problems are detected and
new needs anse. This may require modification to existing code. new code to be
developed, and/or hardware configuration changes. Providing user support is an
ongoing activity. New users will require training and others will require training as
well. The emphasis of this phase will be to ensure that the users needs are met and
the system continues to perform as specified in the operational environment.
Additionally, as operations and maintenance personnel monitor the current system
they may become aware of better ways to improve the system and therefore make
recommendations. Changes will be required to fix problems, possibly add features,
and make improvements to the system. This phase will continue as long as the
system IS in use,

4.1. Tasks and Activities :

Systems Operations : Operations support is an integral part of the day-to-day
operations of a system. In small systems, all or part of each task may be done by the
same person. But in large svstems, each function may be done by separate mdivaduals
or even separate areas. The Operations Manual was developed in previous SDLC
phases. This document defines tasks. activities, and responsible parties and will
need to be updated as changes occur.

Systems operations activitics and tasks need to be scheduled, on a recurring
basis, to cnsure that the production environment is fully functional and is performing
as specified. The following is a checklist of svstems operations key tasks and
activitics:

» Ensure that systems and networks are tunning and available dunng the defined
hours of Operations

» Implement non-cmerzency requests during scheduled Outages, as preseribed
in the Operations Manual.

» Ensure all processes. manual and automated. are documented in the ope rating *
procedures. These processes should comply with the system documentation.)

« Acquisition and storage of supplies, ¢.g.. paper. toner. tapes, removable disk

» Perform backups (dav-to-day protection, contingency).

o Perform the physical security functions including ensuring adequate UPS.
Personnel have proper clearances and proper access privileges ctc.

o Ensure contingency planning for disaster recovery is current and tested.

« Ensure users are trained on current processes and new processcs.

» Ensure that service level objectives are kept accurate and are monitored.

statistics, and system logs. Examples .
d in

» Mainiain performance measurements, i
of performance measures include volume and frequency of data to be process

cach mode, order and type of operations.

214 Svstem Design Concept

« Monitor the performance statistics, report the results, and escalate problems
when thev oceur.

Data / Software Administration : Data / Software Administration 15 needed
to ensure that input data and output data and databases are correct and continually
checked for accuracy and completencss. This includes insuring that any regularly
scheduled jobs are submitted and completed correctly. Software and databases should
be maintained at {(or near) the current maintenance level. The backup and recovery
proccsses for databases are normally different than the day-to-day DASD volume
backups, The backup and recovery process of the databases should be done as a
Data / Software Administration task. A checklist of Data / Software Administration
tasks and activitics arc:

e Performing production control and quality control functions (Job submission,
checking and corrections),

® Interfacing with other functional arcas for dav-to-day checking / corrections.-
Installing, configuring. upgrading and maintaining database(s). This includes
updating processcs, data flows, and objects (usually shown in diagrams).

e Developing and performing data / database backup and recovery routines
for data integrity and recoverability. Ensure documented properly in the Operations
Manual.

o"l_‘:lcwhgpi ng and maintaining a performance and tuning plan for onling process
and databases.

e Performing configuration and design audits to ensure software, svstem,
parameter, and configuration are correct.

Problem and Modification Process : One fact of life with any system is that
change is inevitable. Users need an avenue to suggest change and._ idcm_if‘md problems,
A User Satisfaction Review which can include a Customer Satisfaction Survey can
be designed and distributed to obtain feedback on operational systems to help
determine if the systems are accurate and reliable. Systems administrators and
operators need to be able to make recommendations for upgrade of ha_rd\\'a_n:.
architecture and streamlining processes. For smali in-house systems, modification

requests can be handled by an in-house process. For large integrated systems.
modification requests may be addressed in the Requirements document and may
take the form of a change package or a formal Change Implementation Notice and
may require justification and cost benefits analysis for approval by a review board.
The Requirements document for the project may call for a medification cut-off and
rollout of the svstem as a first version and all subsequent changes addressed as a
new or enhanced version of the system, A request for modifications to a system
may also venerate a new project and require a new project initiation plan,

System / Software Maintenance : Daily operations of the system fsoftware
may necessitate that maintenance personnel identify potential modifications needed

26

Documentation Implementation and Maintenance 215

to ensurc that the svstem continues to operate as intended and produces quality
data. Daily mainienance activitics for the system, takes place to ensure that any
previously undetected errors are fixed. Maintenance personnel may determine that
modifications to the svstem and databases are needed to resolve errors or
performance problems. Also modifications may be needed to provide new
capabilities or to take advantage of hardware upgrades or new releases of svstem
software and application software used to operate the system. New capabilitics
may take the form of routine maintenance or may constitute enhancements to the
system or database as a responsc to user requests for new/improved capabilities.
New capabilities needs mav begin a new problem modification process described
above. At this phase of the SDLC all security activities have been at least initiated
or completed. An update must be made to the System Sccurity plan: an update and
test of the contingency plan should be completed. Continuous vigilance should be
given to virus and intruder deteetion. The Project Manager must be sure that security
operating procedures are kept updated accordingly. ;

Review Previous Documentation @ Review and update documentation from
the previous phases. In particular, the Operations Manual, System Boundary
Document, and Contingency Plan need to be updated and finalized during the
Operations and Maintenance Phase as required.

4.2. Roles and Responsibilities :

This hst brieflv outlings some of the roles and responsibilities for key
maintenance personnel. Some roles may be combined or eliminated depending upon
the size of the svstem to be maintained. Each system will dictate the necessity for
the roles listed below,

System Manager: The System Manager develops. documents and exceute
plans and procedures for conducting activitics and tasks of the Maintenance Process.
To provide for anavenue of problem reporting and customer satisfaction, the Systems
Manager should create and discuss communications instructions with the systems
customers. Systems Managers should keep the Help Desk Personnel informed of
all changes to the system especially those requiring new instructions to users

Technical Support: Personnel which provide technical support to the program.
This support may involve granting access rights to the program. Setup of workstations
or terminals to access the system, Maintaining the operating svstem for both server
and workstation. Technical support personnel may be involved with issuing user
IDs or login names and passwords. In a Clicnt server environment technical support
may perform systems scheduled backups and operating system maintenance during
downtime.

Vendor Support: The technical support and maintenance on some programs
are provided through vendor support. A contract is established outlining the contracted
svstems administration, operators, and maintenance personnel duties and
responsibilitics.

216 System Desipn Concept
One responsibility which should be included in the contract is that all changes
to the system will be thoroughly documented.

Help Desk: Help Desk personnel provide the day-to-day users help for the
system. Help desk personnel should be kept informed of all changes or modifications
to the system. Help Desk Personnel are contacted by the user when questions or
problems occur with the daily operations of the system. Help Desk Personnel need
1o maintain a level of proficiency with the system.

Operations or Operators (turn on/off systems, start tasks, backup etc):
For many mainframe syvstems, an operator provides technical support for a program,
The operator performs scheduled backup, performs maintenance during downtime
and is responsible to ensure the svstem is online and available for users. Operators
may be involved with issuing user IDs or login names and passwords for the system

Customers: The customer needs to be able to share with the systems manager
the need for improvements or the existence of preblems. Some users live with a
situation or problem because thev feel they must. Customers may foel that change
will be slow or disruptive. Some feel the need to create wosk-arounds. A customer
has the responsibility to report problems or make recommendations for changes to
a svsterm. |
Program Analysts or Programmer: Interprets user rcquirc_mcnl,s, designs
and writes ‘the code for specialized programs. User ch:lmgcs, |mprovmnents.
enhancements may be discussed in Joint Application Design Iscsmons. Analysis
programs for errors, debugs the program and tests program dn,.mg.n.l
Process Improvement Review Board: A boetrd of individuals may be
convened to approve recommendations for changes and l_mpmverncms 1m tt!: ;}rstc‘mm
This group may be chartered. The charter should outline what shoud : Crlln::m
before the group for consideration and approval. The board may issue a Chang
Dnrective.
Users Group or Team: A group of ¢
ined concerning a program oOrf 5
:l:t}r::magil:;, sharc prog;ms and can provide expert know
consideration for change. —__
Contract Manager: The Contract Manager has many _r_cspnnsnblllucil\'\“: .
contract has been awarded for maintenance of a prpgram. The Cumrlact Ma f_:.&js
rtificate of training for completion of a Contracting Officer
Shuuld-' Iuwc‘a ?ccnmiw (COTR]) coursc. The Contract Manager™s main role 15 0
Hestuiat RLP:L;..: intercsts of the Procurcment Office are protected and that mo
ﬁik;fsu:?oa?am made to the contract without permission from the Procurement
m incal

Office.

omputer users who share know ledge the
ystem, They usually meet to exchange
ledge for a system under

27

Documentation Implementation and Maintenance

217

Data Administrator: Performs tasks which ensure that accurate and valid
data are eniered into the system. Sometimes this person creates the information
systems database, maintains the databases security and develops plans for disaster
recovery. j]'h:: data administrator may be called upon to create queries and reports
for_ a ‘.'a.“m}' of user requests. The data administrator responsibilities include
maintaining the databases data dictionary. The data dictionary provides a deseription
of each field in the database, the field characteristics and what data is maintained
with the ficld,

Telecommunications Analyst and Network System Analyst:
configures, upgrades and maintains networks as needed. [f the
they ensure that external communications and connectivity are

Plans, installs,
system requires it,
available.

Computer Systems Security Officer (CSSO): The CSSO has a requirement
to review system change requests, review and in some cases coordinate the Change
Impact Assessments, participate in the Configuration Control Board process, and
conduct and report changes that may be made that effect the security posture of the
system,

4.3. Deliverables, Responsibilities and Action

In-Process Review : The In-Process Review occurs at predetermined
milestones usually quarterly, but at least once a vear. The performance measure
should be reviewed along with the health of the svstem. Performance measures
should be measured against the baseline measures. Ad- hoe reviews should be called
when deemed necessary by either party.

User Satisfaction Review : User Satisfaction Reviews can be used as a tool
to determine the need to proceed with a Process Improvement Review Board meeting
or imtiate a proposal for a new system. This review can be used as input to the In-
Process Review.

4.4. Issues for Consideration :

Documentation : It cannot be stressed enough, that proper documentation for
the duties performed by cach individual responsible for svstem maintenance and
operation should be up-to-date. For smooth day-to-day operations of any system, as
well as disaster recovery, cach individual's role. dutics and responsibilities should
be outlined in detail. A systems administrator’s journal or log of changes performed
1o the system software or hardware is invaluable in times of emergencies. Operations
manuals, journals or logs should be readilv accessible by maintenance personnel.

Guidelines in Determining New Development from Maintenance : Changes
o the system should meet the following criteria in order for the change or
modification request to be categorized as Maintenance; otherwise it should be
considered as New Development:

218 System Design Concept

e Estimated cost of modification are below maintenance costs

e Proposed changes can be implemented within 1 system vear

e Impact to system is mimimal or necessary for accuracy of system output
4.5. Review Activity

Review activitics oceur several times throughout this phase. Each time the
system is reviewed, one of three of the following decisions will be made:

® The system is operating as intended and meeting performance expectations,

¢ The system is not operating as intended and needs corrections or
modifications. i

» The users are/are not satisfied with the operation and performance of the
system.

The In-Process Review (conducted at least annually) shall Be conducted in
this phase. The In-Process Review shall be performed to evaluate system
performance, user satisfaction with the svstem, adaptability to changing business
needs, and new technologies that might improve the svstem. This review is diagnostic
in nature and can lead to development or maintenance activities. Any major system
modifications -needed after the system has been implemented will follow the life
¢yele process from planning through implementation. A project management plan,
including a feasibility study, will identify modifications to existing system
documentation (change pages) rather than new system documentation (for example,
a funciional requirements document, a system design document, etc.). The
appropriate reviews and testing will be conducted, based on the scope of the
maodification.

Very short Questions:
1. 'What is documentation ?
What is system implementation ?
What do vou mean by review activity ?
What is the use of Training ?
Who will get benifit from documentation ?

ok moN

! Documentation Implementation and Maintenance 219

 Short

“oE N

Questions: _
What are the roles and responsibilities during Implementation phase 7
Describe the use of documentation 7
What are the activities performed during operations phase ?
Describe various types of training 7
What are the various task performed in Maintanence phase ?

+ Long Question :

bt - O

‘What do you mean by implementation ? Discuss it’s all task and activitics 7
What do you mean by Docwnentation ? Discuss it is all -forms a benefits ?
How you relate documentation a Training during Systems Design 7

What do you Mean by maintenance ? Discuss it’s all task and activities.
Documentation, what role play in System Implementation ?

[o [

28

