UNIT-II

System Design: Interface design tools. user interface- evaluations,
Introduction to Process Modeling, Introduction to Data Modeling.

System Design Techniques, Document Flow Diagrams. Documents, Physical
Movement of documents, Usefulness of Document Flow diagram, Data Flow

| fii)

blagmn‘s_ DFD notation, Context diagram DFD leveling, Process deseripiioas
fgqmc.rm*cd English. Decision Trees and Decision Tables, Entity Relationship Diagrams,
Kntities. Attributes. Relationship, Degree, Optionality, Resolving many to many
ireiationship. Exclusive relationship, Structure Charts, Modules, Parameter passing,

\Execution sequence. Structured Design, Conversion from Data Flow Diagrams to
Structure Charts.

G g Unit - I :
. Fun(c_tional Modeling 95 - 139
8. Data Requirement & data models 140 — 167

e i

o e e

7]

FUNCTIONAL MODELING

-

1
2.

B i

10.
11.

i Objectives '

Functional Requirements

Design Elements

2.1. Modules

2.2. Processes

2.3. Input(s) and Output(s)

2.4. Design of Databases and Files
2.5. Interfaces

3. Functional Modeling Techniques

3.1 Data Flow Diagrams
3.1.1. Elements of Data Flow Diagrams

3.1.1.1. Processes
3.1.1.2. External Entities
3.1.1.3. Data Flow
3.1.1.4. Data Stores

3.2. Different Levels of DFDs

3.3. Making DFDs

3.4 Data Models

Process Specification

Control Flow Model

Control Specifications

Structure Charts

Structure of Modules

8.1. Cohesion

8.2 Coupling

Coding

Data Dictionarv

Other Notation

11.1. System Flowcharts

11.2. Program Flowcharts

11.3 Document Flowcharts

11.4. Prototyping

11.5. Structured Walkthroughs

4

96 System Design Concept

)

11.6. Top-Down Analysis

11.7. HIPO Chants

11.8. Wamier-Orr Diagrams

11.9. Nassi-Schneiderman Diagrams
12. Decision Making and Documentation

12.1 Decision Tree

12.2 Decision Table

12.3 Case Study

12.4 Structured English

i

1. Functional Requirements :

After the thorough analvsis of the svstem is done, the design process for the
proposed system starts. Designing of the system includes making the conceprual
layout of the system using various modeling techniques available and coding the
propesed system for actual implementation,

The first step after the analysis of the svstem is making the conceptual design.
Conceprual design consists of two elements: data model and functional madels.

Data modeling is a technique for organizing and documenting system’s data.
Process model is a technique for organizing and documenting a system's processes,
inputs, outputs and data stores. Generally, these models give the following informancn.

What all processes make up a svstem?

‘What data are used in cach process?

What data are stored?

What data enter and leave the system?

Information is transformed as it tlows through a computer-based system, As
we already know, information transformation basically consists of: input, process
and ourput, The system accepts mput in variety of forms: applics hardw:m?. s«uﬂw;_:m
and human clements to transform input into output; and produces output in a variet v
of forms. The transform(s) may comprise a single logical comparison. a complex
numerical algonithm or rule-inference approach of an expert system. We can create
a flow model for any computer based svstem, regardless of size and complexity. By
{low models, we get to know the functionality {)f:ll system. _)

Data flow diagram is one of the tools used in the analysis phase. [)ile.ﬂ-D\\
diagram is a graphical tool used to analyze the movement of data mral!gla a system-
manual or automated-including the processes, stores of data, and delay in the system.
The transformation of data from input to output, through processes, may be described
logically and independently of the physical components (for example, computers,
file cabirets, disk units, and word processors).

Structure chart is another tool used in designing phase of the hifc evele
2. Design Elements :

This section deseribes the vanous design elements. These include modules,
processes, input, output, files and databascs

r

et R T R T -

Functional Modeling

97
2.1. Modules :

A large system actually consists of various small independent subsystems that
combine together to build up the large systems. While designing the syslem too, the
complete system is divided into small independent modules which may further be
divided if the nced be. Such independent modules are designed and coded separately
and are later combined together to make the system functional.

For the better understanding and design of the system, it should be made as a
hierarchy of modules. Lower level modules are generally smaller in scope and size
compared to higher level modules and serve to partition processes into separate
functions. Following factors should be considered while working on modules:

Size: The number of instructions contained in a module should be Imited so
that module size is generally small.

Shared use: Functions should not be duplicated in separate modules, but
established in a single module that can be invoked by any Other module when needed.
2.2. Processes :

As already discussed, a system consists of many subsvstems working in close
coordmation 1o achieve a specific objective. Each of
specific function and each of these functions may n tumn be consistng of one or
more processes. Thus the system’s functions can be subdivided into processes, as
depicted by fig. 1. A process is a specific act that has definable begirning and ending
points. A process has identifiable inputs and outputs. Create purchase requisition,
follow up order ete. are few examples of processes. For designing of any svstem,
these processes need to be identified as a pant of functional

modeling. Every process
may be different from the other but each of them has certain common characteristics,

these subsvstems carries out a

as;
Functional Decomposition
Er 2
functional O
area g q 0o a
runctons D D I D D E
ol1og
Processes \
Processes could be Ci (|
decomposed inlo (|| [m]
lower-leval
processeas

Fig. 1 : Functional Decomposition

ag System Design Concept

_ ® A process is a specified activity in an cnterprise that is executed repeatedly.
This means that the processes are ongoing, for example, generation of bills may be
labeled as a process for a warchouse as it is repeatedly carried out

® A process can be described in terms of inputs and outputs. Every process
would ha\lrc certain input required which are transformed into a certain m;tput For
ex :lrl_'tplc“m casc of a warchouse, information related to the sale of various itca:ns is
required for gencration of bills. This information is taken as input and the bills generated
are the output of the process.

® A process has definable starting and ending points:

* A process is not based on organizational structures and is carried out
irrespective of this structure,

= A process identifies what is done, not how
2.3. Input(s) and OQutput(s) :

As discussed carlier, inputs and outputs are an impaortant part of any system, so
while designing a svstem inputs and outputs of the system as a whole need to be
ientified and the inputs and outputs for the various processes of the svstem need 1o
be listed down. During design of input, the analyst should decide on the following
detals:

e What data to input

* What medium to usc

® How data should be arranged i

* How data should be coded ie. data representation conventions

® The dialogue to guide users in providing input i ¢. informative messages that
should be provided when the user is entering data, Like saying, “It is required. Don't
leave it blank.™

@ Data items and transactions nceding validation to detect errors

e Methods for performing input validation and steps to follow when errors
aceur

The design decisions for handling input specify how data are accepted for
computer processing. The design of inputs also includes specifving the means by
which end-users and system operators direct the system in performing actions.

Output refers to the results and information that are generated by the svstem.
In many cases, output is the main reason for developing the system and the basis on
which the usefulness of the system is cvaluated. Most end-users will not actually
operate the information system or enter data through workstations, but they will use
the output from the svstem,

While designing the output of svstem. the following factors should be considered:

® Dcicrmine what information to present

e Decide on .the mode of output, i.e. whether to display, print, or “spcak” the
mformation and seleet the output medium

Functional Modeling 99

e Arrange the presentation of information in an acceptable format

e Deccide how to distribute the output to intended recipients

These activities require specific decisions, such as whether to use preprinted
forms when preparing reports and documents, how many lines to plan on a printed
page, or whether to use graphics and color. The cutput design is specified on lavout
forms, sheets that describe the location characteristics (such as length and I.}:pc),
and format of the column heading, ete.

2.4. Design of Databases and Files :

Once the analyst has decided onto the basic processes and inputs and outputs
of the system. he also has to decide upon the data to be maintained by the system
and for the system. The data is maintained in the form of data stores, which actually
comprise of databases. Each database may further be composed of several files
where the data is actually stored. The analyst, during the design of the system,
decides onto the various file-relating issues before the actual development of the
sysiem starts,

The design of files includes decisions about the nature and content of the file
itself such as whether it is to be used for storing transaction details, historical data,
ar reference information.

Following decisions are made during file design:

® Which data items to include in a record format within the file?

o Length of each record, based on the characteristics of the data items

® The sequencing or arrangement of records within the file (the storage structure,
such as sequential, indexed, or relative)

In database design, the analyst decides upon the database model to be
implemented. Database model can be traditional file based, relational, network,
ligrarchical, or object oriented database model
2.5. Interfaces :

Systems are designed for human beings to make their work simpler and faster.
Hence interaction of any system with the human being should be an important arca
of concern for any system analyst. The analyst should be carcful enough to design
the human clement of the svstem in such a manner that the end user finds the
system friendly to work with. Interface design implies dccldlrrg upon the human
computer interfaces. How the end user or the operator will interact with the system.
It includes designing screens, menus, ete.

The following factors should be considered while .working on interfaocs_

e Use of a consistent format tor menu, command input, and data display

& Provide the user with visual and auditory feedback to ensure that two-way
communication is established.

e Provide undo or reversal functions. . -
» Reduce the amount of information that must be memonzed between actions

100

understanding,

System Design Coneept

. Eroviq:z help facilitics that are context sensitive
: D:s: Is:m]:ul:: actlon_ve:bs or short verb phrases to name commands
= m|:i ay only tbat information that is relevant to the current ccnrc'n-

uce meaningful error messa .
® Use upper and lower case

. indentation, and text grouping to aid in

® Produce meaningful error messages,

Beginning of Design

Database and files
designing

Detailed system
documentation

]

Submission of
Dasign for Management
approval

WO dasigning g

designing

Design
accepled 7

Test programs

Go to implementation

Fig. 2 : Basic Steps in System Dcsign

 ——

—

101

Muinlgin consistency between information display and data input. The visual
characteristics of the display (¢.g., text size, color, and placement) should be :
gver to the input domain, Famed

]m.cr.eul:tion should be flexible b:_u also tuned to user’s preferred mode of input,

Deactivate commands that are inappropriate in the context of current actions,

Provide help to assist with all input actions.

3. Functional Modeling Techniques : ._

Now that we are familiar with the various design elements, let us take a look at
modeling techniques that are used for designing the systems. Data Flow Diagrams are
used for functional modeling, As the name suggests, it is a diagram depicting the flow of
data through the system. In the next section, we'll explore this technigue in detail,

3.1. Data Flow Diagrams :

A Data Flow Diagram (DFD) is used to describe operation of a system, i.e.
what a svstem does, DFD shows the flow of data through a svstem and the work or
processing performed by that systerm
3.1.1. Elements of Data Flow Diagrams :

Data Flow Diagrams are composed of the four basic symbols shown below :

e The External Entity symbol represents sources of data to the sysiem or
destinations of data from the system. ;

The Data Flow symbol represents movement of data

The Data Store symbol represents data that is not moving (delaved data at
rest).

e The Process svmbol represents an activity that transforms or manipulates
the data (combines, reorders, converts, eic.).

Any system can be represented at any level of detail by these four symbols.

3.1.1.1. Processes : Processes arc work or actions performed en incoming
data flows to produce outgoing data flows These show data transformation or
change. Data coming into a process must be “worked on” or transformed in some
way, Thus, all processes must have inputs and outputs. In some {rare) cases, data
inputs or outputs will only be shown at more detailed levels of the diagrams. Each
process in always “running” and ready 9 accept data.

Major functions of proccsses are computations and making decisions, Each
process may have dramatically different timing: vearly. weekly, daily.

Naming Processes : Processes are named with one carefully chosen verb
and an object of the verb. There is no subject. Name is not to include the word
“process”. Each process should represent one function or action. If there 1s an
“and” in the name, you likely have more than one function {and process). For example.
set invoice update customer and create Order

Processes are numbered within the diagram as conventent. Levels of detail are
shown by decimal notation, For example, top level process would be Process 14,
next level of detail Processes 14.1-14.4, and next level with Processes 14.3.1-14.3.6.
Processes should generally move from top to bottom and left to right.

Functional Modeling

o°

¥

10 3 i " |
032 System Design (onccﬂl Functional Modeling L
3.1.1.2. External Enl-ities 2 E:\:tcmal c_:nlitic-s determine the system boundary, - represented as the 0 level DFD is partitioned to reveal mor¢ information. For example,
m:;: :;t'flnml lcnI the s%fl:zm being studied. They are often beyond the area of al level DFD might contain five or six bubbles with interconnecting arrows.
¢ developer. $¢ can represent anotl ; i 1
cp e system or subsystem, Thes, 3.3. Making DFDs :

80 on margins/edges of data flow diagram. External entitics are ith |
appropriate name. re named with Data Flow Diagramming is a means of representing a system at any level of

F detail with a graphic network of symbols showing ‘data flows, data stores, data
from) a process (“data in motion”). Data flows only data, not control, Represent the | PrOesses: anti data sources/destinations.

minimum essential data the process needs. Using only the minimum essential datg | The goal of data flow diagramming is to have a commonly understood model of
reduces the dependence between processes. Data flows must begin and/or end at 5 | @ SYSEEM- The diagrams are the basis of structured systems analysis. Data flow
process. - diagrams ar¢ supported by other technigques of* structured systems analysis such as

: Data flows are always named. Name is not to include the word “data™. Shoylq | structure diagrams, data dictionarics, and procedure-representing techniques such

be given unique names. Names should be some identifying noun. For example, order, | 3 decision tables, decision trees, and structured English.
payment, complaint. | The purpose of data flow diagrams is 1o provide a semantic bridge between
3.1.1.4. Data Stores : Data Stores are repository for data that are temporarily | users and systems developers. The diagrams are graphical, eliminating thousands of

or permanently recorded within the system. It is an “inventory” of data, . words. These are logical representations, modeling what a swvstem does, rather than
These are common link between data and process models. Only processes 5 physical models showing how it does it. DFDs are hierarchical, showing systems at
may connect with data stores . any level of detail. Finally, it should be Jargonless. allowing user understanding and
There can be two or more svstems that share a data store. This can ocour in | reviewing. Also, data flow diagrams have the objective of avoiding the cost of
the case of one system updating the data store, while the other system only accesses | e user/developer misunderstanding of a system, resulting in a need to redo
the data. | systems or in not using the system.
Data stores are named with an appropriate name, not to include the word e having to start documentation from scratch when the physical system changes

“file”, Names should consist of plural nouns describing the collection of data. Like | since the logical system, WHAT gets done, often remains the same when technology
customers, orders, and products. These may be duplicated. These are detailed in the | ¢hanges.

data dictionary or with data description diagrams. ! * systems incfficiencies because a system gets “computerized” before it gets
e | “systematized™ .
CGP Rules Result Date i = being unable to evaluate system project boundaries or degree of automation,
Data Stores Store

- msulting in a project of inappropriate scope.

! Notation : Data flow analysis was developed and promoted simu Itancouslv by
| o organizations. Yourdon Inc.. a consulting firm, has vigorously promoted the
| method publicly. Mc Donnell-Douglas, through the work and writings of Gane and
i Sarson, has also influenced the popularity of data flow analvsis.

= Compute) CGP P ! Data flow diagram can be completed using only four simple notations. The use
b | of specific icons associated with each clement depends on wheiher the Yourdon or
. Gane and Sarson approach is used.
: Fig. 3 : DFD showing rank calculation process of a university [1) People, procedures, or deviees that use or product (transform) data. The
3.2. Different Levels of DFDs : ! physical component is not identified
The DFD may be used to represent a system or software at any level of i Z
abstraction, In fact, DFDs may be partitioned into levels that represent increasing |
information flow and functional details, i Q D
A 0 level DFD, also called a context model, represents the entire software i
clements as a single bubble with input and output data indicated by incoming and
outgning arrows, respectively. Additional processes and information flow paths are l Yourdon Gane and Sarson
! Fig. 4 : Process or transform

104 System Design Concepy

Functional Medcling

2) Data flow: Data move in a specific dircetion from origin to a destination in
the form of a document, letter, telephone call, or virtually any other medium. The
data flow 1s a “packet” of data.

.

“Yourdon " Ganc and Sarson
A@ B c

Fig. 5 : Data flows

3) Source or destination of data’ external sources or destination of data. which |
may be people, programs, organizations, or other entities, interact with the system |
but are outside its boundary. The term source and sink are interchangeable with |
origin and destination. i

Yourdon Gane and Sarson

Fig. 6 : Source or destination of data (external) i
4) Here data are stored or referenced by a process in the svstem. The data
store may represent computerized or non-computerized devices,

Yourdon Gane and Sarson

Bt

|
Fig. 7 : Data stores Ii
Each component in a data flow diagram is labeled with a descriptive name |
Process names are further identified with a number that will be used for identification |
purposes, The number assigned to a specific process does not represent the sequence |
of processes.
Muitiple input data streams and multiple data output streams are possible
If two adjacently placed input are both required then a star sign (*) 1s placed :
between these. = !

B

Fig. 8 Star Sign when two inputs are required for a transiorm

105

CGP Rulag
£l
Marks Computa | CGP
g v"‘”’

Fig. 9 :DFD showing when two inputs are both required.

If either of two adjacent .placed inputs then a ring plus is placed between

these.
A
%
B

Fig. 10 : Ring Plus when cither of two inputs is required

Citizens
Information

Security No.

Fig. 11 : DFD showing when ¢ither of two inputs is required.

[

106 i |
System Design Conecept |

Functional Mudg:ling 107
e Draw middlc-level DFDs
Explode the composite processes
e Draw primitive-level DFDs
Detail the primitive processes
Must show all appropriate primitive data stores and data flows
i e verify all data flows have a source and destination;
i o verify data coming out of a data store goes in;
o review with “informed".
explode and repeat above steps as needed.
Fig. 12 : Data Flow diagram usi i Bn!am:mg_ D_FD‘? E 5 : i ;
ng Yourdon notation i« Balancing: child diagrams must maintain a balance in data content with their
Th? pr(!cedure for producing a data flow diagram is to: i parent processes
e identify and list external entities providing inputs/receiving outputs from svstem: ' o Can be achicved by either:
& identify and list inputs from/outputs to external entities: O exactly the same data flows of the parent process enter and leave the child
e Draw a context DFD i diagram, or
Defines the scope and boundary for the system and project 0 the same net contents frorn the parent process serve as the initial inputs and
1. Think of the system as a container (black box)) final autputs for the child diagram or
2. Ignore the inner, workings of the container @ the data in the parent diagram is split in the chuld dizgram
3. Ask end-users for the events the svstem must respond 1o ¢ Rules for Drawing DFDs : _
4. For each event, ask end-users what responses must be produced by the system B v rnusli.ha\fc Ao m m?ul Sixlicne ou-:put d_am RN ;
5. Identify any external data stores ; . :ago;‘:‘s:sbcgms to perform its tasks as s0on as it recgives the necessary input
6. Draw the contekt diagram— :

A primitive process performs a single well-defined function

Use only one process : 3
Mewver label a process with an IF-THEN statement

Only show those data flows that represent the main objective or most common . g
inputs/outputs . | Mever show time dependency directly on a DFD

Be sure that data stores, data flows, data processes have deseriptive titles.

identifv the business functions included within the system boundary; i ; ; : ;
H Processes should use imperative verbs to project action

identify the data connections between business functions,
confirm through personal contact sent data is received and vice-versa;

trace and record what happens to cach of the data flows entering the system
(data movement, data storage, data transformation/processing.

s All processes receive and generate at least one data flow.
+ Begin/end data flows with a bubble.

Rules for Data Flows :

1. A data storc must always be connected to a process

2. Data flows must be named

3. Data flows ar¢ named using nouns
o Customer 1D, Student information

4. Data that travel together should be one data flow
5. Data should be sent only to the processes that need the data

*® 8 8 @

e Draw an overview DFD :
Shows the major subsystems and how they interact with one another |

Exploding processes” should add detail while retaining the esscnce of the details |
from the more gencral diagram

Consolidate all data stores into a composite data store

10

108

Use the Followin
Identify the K

that transforms one piece of data into another form. _
Process bubbles should be arranged from top left to bottom right of page.

T‘\fumbzcr _cach process (10, 2.0, ete). Also name the process with a verh that
describes the information processing activity.

Name each d flow with a nou n that describes the inform
of a process. What goes in should be different from
Data stores, sources and destinations are also n
Realize that the highest level DFD is t
entire system as one bubble and shows the i

ation going into and out
what comes out.

amed with nouns,

1¢ context diagram. It summarizes the
nputs and outputs to a system

Each lower level DFD must balance with its higher level DFD. This mecans
that no inputs and outputs are changed.

Think of data flow not control flow. Data flows are pathways for data. Think
about what data is needed to perform a process or update a data store. A data flow
diagram is not a flowchart and should not have loops or transfer of control. Think

about the data flows. data processes, and data storage that are needed to move a
data structure through a svstem,

Do not try to put everything yvou know on the data flow diagram. The diagram
should serve as index and outline. The index/outline will be “fleshed out™ in the data
dictionary, data structure diagrams, and procedure specification techniques.
Examples :

1. Students wish to register for courses. Some courses, have a prerequisite,

which must be satisfied. A student must take the compulsory courses of herfhis 2. A
student can withdraw within 21 davs of registration. Enhance the above DFD.

Check
Validity

Compulsory
COUrses

Pre-requisite
storg

Opt. Courses
store

Fig. 13 : DFD for a registration for university's new semester

1

System Design Coneept Functional Modeling 109
g Additional Guidelines when Drawing DFDs. :
€Y processing steps in a system. A processing SIep is an activity
New
form

v

Compulsory
courses

Fig. 14 : DFD when the student has the option of withdrawing within 21 days
Exercise: Railway Reservation System :

Railway caters to the need of passenger Tickets can be booked for different
lasses. Some concessions are available for catcgories like students, old people, ete.
there is a special category for reserving tickets for handicapped people, military,
MPs, There is a certain surcharge levied for special trains. Fare computation depends
on the class, category, train, and distance. The passenger is issued a confirmed
ticket if seat is available. She/he gets a wait listed/RAC ricket if she/he so desires,

DFDs pay a major role in designing of the software and also provide the basis
for other design-related issues. All the basic clements of DFD are further addressed
in the designing phase of the development procedure.

A data model organizes data elements and standardizes how the data elements
rclate to one another. Since data elements document real life people, places and
things and the events between them, the data model represents reality, for example
a house has many windows or a cat has two eves. Computers are used For_ﬂu-.
accounting of these real life things and events and therefore the data model is a
necessary standard to ensure exact commumcation between human beings.

A data model is a set of svmbols and text used for communicating a precise
representation of an information landscape. As with a .mndal of any landscape,
such as a map that models a geographic landscape, certain content is included and
certain content excluded to facilitate understanding.

110 Swystem Design Coneept

Business Model Integration

__ Business Model

Process Model Data Model]

[_F_‘_"":_\:SFJ (=] [rocem] (o5t] (o] (o |
Y ¥ o
[Pseudacade L;g::jl E%::j

[Aoplication Prototypes] Requirements <
‘_“Ilr— Document l_:l _-E:I
r S
J—0 H — O
& |

User Application Database /O Data
View Panels Programs Generation Structures

Physical
Model

Fig.: 15

Data model is based on Data, Data relationship. Data semantic and Data
constraint. A data medel provides the details of information to be stored, and is of
primary use when the final product is the generation of computer software code for
an applicartion or the preparation of afunctional specification to aid a computer
software makc-or-buy decision. The figure is an example of the interaction between
process and data models.

Data models are often used as an aid to communication between the business
people defining the requirements for a computer system and the technical people
defining the design in response 1o those requirements, They are used to show the
data needed and created by business processes,

According to Hoberman (2009), A data model is 2 way finding 100l for both
business and IT professionals, which uses a set of symbols and text to precisely
explain a subsct of real information to improve communication within the organization
and thereby lead to a more flexible and stable application environment.”™

A data mode! explicitly determings the structure of data. Data models are
specified in a data modeling notation. which is often graphical in form A data
model can be semetimes referred 1o as a data structure, especially in the context
of programming languages Data models arc often complemented by function
models, especially in the context of enterprise modeis.

Types of data models
Database model

A database model is a specification deseribing how a database 15 structured
and used. Several such models have been suggested. Common medels mclude

12

Functional Modcling
Flat model

Thm may not slrlcl_ly qualify as a data model. The flat (or table) model consists
of a single, two-dimensional array of data clements, where all members of a given
column are assumed to be similar values, and all members of a row are assumed o
be related to one another.

Hierarchical model

In this model data is organized into a tree-like structure, implying a single upward
link in cach record to desenibe the nesting, and a sort field 1o keep the records in a
particular order in cach same-level list.

Network model

This model organizes data using two fundamental constructs, called records
and sets. Records contain fields, and sets define one-to-many relationships between
records: one owner, many members,

Relational model

15 a database model based on first-order predicate logic. Its core idea is o
describe a database as a collection of predicates over a finite sct of predicate
variables, describing constraints on the possible values and combinations of values.
Object-relational model

Similar to a relational database model, but objects. classes and inheritance arc
dircetly supported in database schemas and in the query language
Star schema

The simplest style of data warchouse schema, The star schema consists of
a few “fact tables™ (possibly only one, justifying the name) referencing any number
of “dimension tables™. The star schema is considered an important special case of
the snowflake schema.

DFD

A data flow diagram (DFD) is a graphical representation of the “flow” of
data through an information system, modelling /s process aspects. DFDs can
also be used for the visualization of data processing (struciured desizn).

A two-dimensional diagram that graphically representation of the “flow” of
data through an information system, modelling res process aspects and explams
how datais processed and transferred in a svstem. The graphical depiction identifies
¢ach source of data and how it interacts with other data sources to reach a common
output. A DFD is often used as a prelimmnary step to create an overview of the
system, which can later be claborated |

A DFD shows what kind of information will be input to and output from the
system, where the data will come from and go to, and where the data will be stored
While making DFD we should

(1) identify external nputs and outputs, (2) determine how the inputs and
outputs relate to cach other, and (3) explain with graphics how these conncctions
relate and what they result in.

112
System Design Coneept

The Food Ordering System Example
Context DFD

FoodTg:deﬁg:;est:::m s[hows a context Data Flow Diagram that is drawn for a
s g Y r.h:; t ;3:;3.135 a process (shape) that represents the system to
i ‘;m e \;.rith . rdering System”. It also shows the participants
i e system, called the external entities. In this example,

ppiier. Kitchen, Manager and Customer are the entities who will interact with
the system. In be‘twu::n the process and the external entities, there are data flow
(connectors) that indicate the existence of information excha.ng‘e between the entities

and the system.
i Supplier |

£

Customer T
Supplier

| Manager.l
Fig. 16

Context DED is the entrance of a data flow model. [t contains one and only
one process and does not show any data store.

Level 1 DFD

The figure below shows the level | DFD, which is the decomposition (i.¢.
break down) of the Food Ordering System process shown in the context DFD.
Read through the diagram and then we will introduce some of the key concepts
based on this diagram.

The Food Order System Data Flow Diagram example contains three processes,
four external entities and two data stores.

Based on the diagram, we know that a Customer can place an Order: The
Order Food process receives the Order forwards it to the Kiichen, store it in the
Order data store, and store the updated Inventory details in the fvenfory data
store. The process also deliver a Bill to the Cusiomer. .

Manager can receive Reports through the Generate Reports process, which
takes frventory details and Orders as input from the fnventory and Order data
store respectively.

13

Functional Modeling,

113
- e i 3
S Oidee Feod Cber D
L * Kikchan
S
lrnransory cetalls Crmser
Mansge
imventory detads
3
Suppher Orcer Inventoey lovecmiory svetes z J
. Inupneony oroer
Fig. 17

Manager can also initiate the Order Inventory process by providing [nveniory
order The process forwards the fnventory orderio the Supplier and stores the
updated [nvenrory details in the Inveniory data store
4. Process Specification :

A process specification (PSPEC) can be used to specify the processing details
implied by a bubble within a DFD. The process specification describes the input to
a function, the algorithm, the PSPEC indicates restrictions and limitations imposed
on the process (function), performance characteristics that are relevant 10 the process,
and design constraints that may influence the way in which the process will be
implemented. In other words, process specification 1s used to describe. the inner
workings of a process represented in a flow diagram.

5. Control Flow Model :

The Hatley and Pirbhai extensions focus on the representation and specification
of the control-oriented aspects of the software. Moreover, there exists a large class
of applications that are drven by events rather than data that produce control
information rather than reports or displayvs, and that process information with heavy
concern for time and performance. Such an application requires the use of :;umroi
flow modeling in addition to data flow modelng. For this purpose, control flow diagram
is created. The CFD contan the same processes as the DFD. but shows control
rather than data flow. Control flow diagrams show how events flow among processes
and illustrate those external events that cause vanous processes to be activated.
The relationship between process and contrel model is shown in Fig. 15.

114 System Design Concept
Drawing a control flow medel is similar to drawing a data flow diagram. A data
flow model is stripped of all data flow arrows. Events and eontrol items are then

added to the diagram a “window™ (a vertical bar) into the control specification
is shown.

6. Control Specifications :

The CSPEC is used to indicate (I) how the software behaves when an event or

control signal is sensed and (2) which processes are invoked as a consequence of
the occurrence of the event. The control specification (CSPEC) contains a number
of important modeling tools.

The control specification represents the behavior of the system in two ways. The
CSPEC contains a state transition diagram that is sequential specification of behav-
ior, It also contains a process activation table (P AT) -a combinatorial specification
of behavior.

Process Model

Data input

Data Input
[—

Process «

A[:l.iuam;i —

Gontrod Madel :

ey e CSPECs it
Control Output x e [

Fig. 18 : The relationship between data and control models
7. Structure Charts :

Once the flow of data and control in the system is decided using tools like
DFDs and CFDs. the svstem is given shape through programming, Prior to this, the
basic infrastructure of the program layout is prepared based on the concepts of
modular programming. In modular programming, the complete system is coded as
small independent interacting modules. Each module is aimed at doing one specific
task. The design for these modules is prepared in the form of structure charts,

A structure chart is a design tool that pictorially shows the relation between
processing modules in computer software. Describes the hierarchy of components
modules and the data are transmitted between them. Includes analysis of mput-to-
output transformations and analysis of transaction.

14

i R

e e

Functional Modeling, 115

Structure charts show the relation of processing modules in computer software.
it is a design tool that visually displays the relationships between program modules.
It shows which module within a system interacts and graphically depicts the data

hat are communicated between various modules.

Structure charts are developed prior to the writing of program code. They

identify the data passes existing between individual modules that interact with one
another.

They are not intended 1o express procedural logic. This task is left to flowcharts
and pseudocode. They don’t describe the actual physical interface between processing
functions. #

Notation : Program modules are identified by rectangles with the module name
written inside the rectangle. .

Arrows indicate calls, which are any mechanism used to invoke a particular
module. .

Rectangle
denotes
module \\
Module A Arrow indicates that
/ one module calls
Module A another; direction
Calling ™ indicates which
module | r/__‘ module is calting,
Called L Arrow also implies
transfer of information
Module B between modules.
module 4]
MName

Fig. 19 : Notation used in structure charts.

Annotations on the structure chart indicate the parameter that are passed and
the dircction of the data movement. In Fig. 17, we see that modules A and B interact.
Data identificd as X and A are passed to module B, which in turn passes back Z.

A calling module can interact with more than one subordinate module. Fig. 17
also shows module L calling subordinate modules M and N. M is called on the basis
of a decision point in L (indicated by the diamond notation), while N is called on the
basis of the iterative processing loop (noted by the arc at the start of the calling
arrow,

116 System Design Concept
Data
Parameters
Module A Data Module L -
Paramelers
z Control (flag)
Information
Ccmtrnl {tlag}
Information &
Module B Module M Module N i

Subordinate module

: Selection of subordinate module
called directly

depends upon decision points or
iterative processing

Fig. 20 : Annotations and data passing in structure charts

Data Passing : When one module calls another, the calling module can send
data to the called module so that it can perform the function described in its name.
The called module can produce data that are passed back to the calling module.

Two tvpes of data are transmitted. The first, parameter data. are tems of data
needed in the called module to perform the necessary work. A small arrow with an
open circle at the end is used to note the passing of data paraméiers. In addition,
control information (flag data) 1s also passed. [ts purpose is to assist in the control of
processing by indicating the occurrence of, say, errors or end-of-conditions, A smalil
arrow with a closed arcle indicates the control information. A brief annotation
describes the type of information passed

Structure chan is a tool to assist the analyst in developing software that meets
the objectives of good software design,

8. Structure of Modules :

We have discussed in the previous chapter that a system may be seen as a
combination of several small independent units. So, while designing software also, it
is designed as a collection of scparately named and addressable components called
modules. This propeny of software is termed as modularity. Modulanity is a very
important feature of any software and allows a program to be intellectually
manageable. For instance, while coding small programs in "¢’ also, we make a
program as a collection of small functions. A program for finding average of three
numbers may make use of a function for calculating the sum of the numbers. Each
of these can be called as a separate module and may be written by a different
programmer. But once such modules are created, different programs may use them.

15

; Funcuonal Modc!mg

117
Thus modulanty in software provides several a,dva.magﬁ apart from malqns the
program more manageable. '
While designing the modular structure of the program, several issues are to be
paid attention. The modular structure should reflect the structure of the problem. It
should have the following properties,
1. Intra-module property : Cohesion
Modules should be cohesive.
2. Inter module property : Coupling
Modules should be as loosely interconnected as possible.
— Highly eoupled modules are strongly interconnected.
— Loosely coupled modules are weakly connected.
— De-coupled modules exhibit no interconnection.
3. A module should capture in it strongly related elements of the problem.

8.1. Cohesion :

Cohesion, as the name suggests, is the adherence of the code statements within
a module. It is a measure of how tightly the statements are related to each other in
a module. Structures that tend to group highly related clements from the point of
view of the problem tend to be more modular. Cohesion is a measure of the amount
of such grouping.

Cohesion is the degree to which module serves a single purpose. Cohesion isa
natural extension of the information-hiding concept. A cohesive module performs a
single task within a software procedure, requiring little interaction with procedures
being performed in other parts of a program. There should be always high cohesion.

Cohesion: modules should interact with and manage the functions of a limited
number of lower-level modules.

There are various types of cohesion,

1

Functional Cohesion : A module performs just one function.
Examples:
1. READ-RECORD.

2. EDIT-TRANSACTION

This is acceptable. But it breaks modules down into very small parts.

Sequential Cohesion : Module consisting of those processing clgmnls, which
has the output of one as the mput of the next, is known to be sequentially cohesive.

Module consisting of P and Q. ,

In terms of DFD, this combines a lincar chain of successive transformations.
This is acceptable.

118 System Design Concepy

——(D——(D——
Fig. 21 : P and Q modules show sequential cohesio
Example: ’
1. READ-PROCESS; WRITE RECORD

2. Update the current inventory record and write it to disk.

) Communicational Cohesion : Module consists of ail processing elements
which act upon the same input data set and/or produce the same output data sct.

Fig. 22 : Communicational cohesion
P and Q form a single module.
Module is defined in terms of the problem structure as captured-in the DFD. It

is commonly found in business or commercial applications where one asks what are
the things that can be done with this data set.

This is acceptabie.

Example:

1. Update master time clock record, the emplovee time and the current pay
entry- all from same record.

Procedural Cohesion : Module formation associates processing clements
together since these are found in the same procedural unit.

Often found when modules are defined by cutting up flowcharts or other
procedural artifacts. Therc s a0 logical reasoning behind this. Fig 20 illustrates this.

in this all the clements that arc being used in the proq@durc 2 are put in_ the same
module. It is not acceptable. Since clements of processing shall be found in various

modules in a poorly structurcd way.
Temporal Cohesion : Temporal Cohesion is module formation by putting
togcther all those functions. which happen at the same time. -
Example: Before sorting, write a proof tape and check totals. So put functions
for writing proof tape and checking fotals in the same module.

16

!
l
|
|
!

119

| *— Procedure 2 for while loop

Fig. 23 : Procedural cohesion

Logical Cohesion : Logical Cohesion-is module formation by putting together
a class of functions to be performed. It should be aveided.

For example, Display error on file, terminal, printer, etc.

Display_srror
on = Modula A

+ File
+ Terminal
= Printer

Fig. 24 :Logical Cohesion

Fig 21 shows logical cohesion. Here function Display error is for files, terminals,
and printers. Since the function is to display error, all three functions are put into
same modules. :

Another cxample, produce job control reports, library file listings, and customer
¢ mun support.
i Coincidental Cohesion : Coincidental Cohcsion is module formation by
coincidence. Same code is recognized as occurring in some other module. Pull that

code into a separate module. This type of cohesion should be avoided since it docs
j mot reflect problem structure.

mrrrr——

120 - .) System Design Concept
8.2 Coupling :

There are four type of coupling
Data coupling: In this argument list data that is passed to the module. In this
type of coupling only data flow across modules. Data coupling is minimal

Stamp coupling : In this type of coupling, a portion of the structure is argument

Control coupiing : If there is control flag, that is, control decisions in
subordinate module then it is control coupling;

Common Coupling : Common coupling occurs when there are common data
areas. That is there are modules using data that are global. It should be avoided,

Global
area

(Global data area)

Fig. 25 : Common coupling
Content coupling: if there is data access within the boundary of another. For
N . - -
ple, passing pointer can be considered as content coupling or branch into the
exam, .

middle of a module.

- i : » - . TR 3
Stru n-.Jrc charts provide the framework for programmers to code the vanous
maodu : :l‘rhc system by providing all the necessary information about cach module
o - tem -:'rrom hc;n: the system analyst takes a back seat and programmer
— -"‘.'"sn'"' : Ogramm c very le of the svstam, which
i codes cach and cvery module of the svsie
.5 n, Programmer © 3
comes into actio

€5 4 p' ysica ape Stem.
2IVES a4 pnysic 1 sk pe to the syst
&

17

e —

Functional Modeling

From here, the System goes for testing,
10. Data Dictionary ;

The analysis model encompasses representations of data objects, functions,
and ccm:rol.. In cach representation data objects andior control items plava role.
"f'hercﬁ;m?, 1L 15 necessary to provide an organized approach for representing the
cha.ragtcnshcs of each data objects ang control items, This is accomplished with the
data dictionary.

Formally, Data Dictionary can be Defined as: The dara dictionary is an
orgamzed listing of all data elements that are pertinent to the system, with precise,
ngorous definitions so that both user and system analvst will have a common
understanding of Inputs, outputs, components of stores and even intermediate
calculations,

Data dictionary contains the following information :

I Name-the Pnmary name of data or control item, the data storc, or an external
entity.

I Alias-other names used for first entry

I Where-used/how-used-a listing of the processes that use the data or control
item and how it is used. For example. mput to a process, output from the process, as
a store, as an external entity

Central description- a notation for representing content,

Supplementa rv information - other information about data tvpes, preset values,
restrictions or limitations, ete

The logical characteristies of current data stores, including name, description,
aliascs. contents, and orgamzation. ldentifics processes where the data nn. uged
and where unmediate aceess to information is needed. Serves as the basis for

dennifyving database requirements during svstem design,

122 System Design Concept

11. Other Notation :
11.1. System Flowcharts :

Systems flowcharts are graphic illustrations of the physical flow of information
through the entire accounting svstem. A systems flowchart is commonly used in
analysis and design. Flowlines represent the sequences of processes, and other
symbols represent the inputs and outputs to a process. Accountants use system
flowcharts to describe the computerized processes, manual operations, and inputs
and outputs of an application system. Auditors use system flowcharts to identify
key control points in an accounting svstem’s internal control structure. Figure shows
the basic flowchart symbols. An example of a systems flowchart is shown below

Physical Flow Telecommunication
of Goods Link
Report of Manual Process U
Document
Disk Master Process
File
Data Input Device
Ke rd
Disk (4
File
Monitor Screen
(CRT)
On Page
] Conneclor
Flow Direction ———
. Off Page [;I
Off Lane File v Connactor
Start/Stop/Endby @ Decision <>

Fig. 26 Flowchart Symbols

18

T ——

Functional Modcling 123

User Analyst

Assist Users in
Desnl:ml g Meeds,
estimmate costs

I

Create prototype
and debver to
user

Describe system
needs

“Test prototype and
deterrene if
meets needs

Mo Gam understandmg
of addmonal needs,

change proworype |
1

P T

Deliver |
mod:fied
prototype Lo user

Use prototype as |
modcffur specific

apphcanon

Fig. 27 : System Flowchart of Sales Transaction Processing

11.2. Program Flowcharts :

Program flowcharts illustrate how individual computer programs work. That
is, a program flowchart will show in detail each processing step of a computer
program. Exhibit 4 depicts the master file update process in a batch processing
system. As shown, the transacticn record number is compared to the master file
record number. When the two numbers match, then the master file account balance
(MF_AMT) is updated. This process continues until all master file transaction file
records are read.

Use pro = m
dnp':ﬂl:::wmé
system

124

: System Design Concept Functional Modeling A 125

Rad Transaction
Data Record (TX)
(Previously Sored)

Key to Disk ll:tim gla:;eé
a Re
' (MF})

r i

Data Entry F =
and Edit

=
o
>
=
3
]

'1

Sales
Transactio
File

Customer
Master File

r
Update

Customer
Master File J

Red Nexa

Record

v

Customer
Report i

®
Fig. 29 : A Document Flowchart of Sales Order Processing

11.4. Prototyping : .
Prototyping is the creation of a shell template of a system. In protonyping an
information system, only sections of the system are modeled with emphasis on user

Fig. 28 : Programm Flowchart of Master File Update process

11.3. Document Flowcharts :
A document flowchart displays the flow of documents between organizational

units. The chart s d|\f|dcd. mt9 scvcr;l co]umn_s separated by v::|:1ic.-4] lines. Each interfaces such as screens, menus, source documents, and reports. This emphasis

coltsrepmsit svETENC B HAL LA Fualin o department, scction, or cmployee; sures that the user approves of the output. It is imporiant that users understand
. 'c . o e . 7 cnsu o : : R "

o= omat shiora themovamant af a document fom ano dcparoait 1o anofler that the modeling and building of the data underlying the shell is a time-consuming

by a flowline connecting the document symbol in cach department. and critical portion of system development.

19

System Design Concepy

(-]
<>
Fig. 30 : Developing a System from a Prototype
LL5. Structured Walkth roughs :

As a new system is developed, structured walkthrough is the meeting together
of programmers and/or analysts on a regular basis to evaluate (i.c. walkthrough)
their designs or codes, These walkihroughs provide constructive criticism and the

opportunity to detect and correct logic errors before the testing phase of svstems
development occurs.

11.6. Top-Down Analysis :

In top-down analvsis. the analyst begins with an overview of the entire system
and gradually progresses until details at the lowest level are understood. This is an
interactive process such that the analysis, design, coding, testing, and installation
steps occur at ¢ach level The greatest benefit o top-down analysis is thai the

difficult interface bugs are found carly in the development process rather than at the
end.

20

Functional Modeling
11.7. HIPO Charts -

HIPO stands for Hicrarchy plus Input, Process, Output. The first parn, the
hicrarchy, is a visual table of contents that displays the modules in a h:it’.‘r:l.rchy much

like the appearance of an erganization chart, The second part is 3 diagram that [isgg
all input, all processes, and all output, and is eften called an “IPO™ char.

127

Zales Transaction
Processing

]
| [[|

Inweice
Register

Fig. 31 ; HIPO Chart of Sales Transaction Processing
118, Warnier-Qrr Diagrams :

P Credst Debs
’ hates , Payments I Adpustment , Adustment
Inputs Processes Cnstputs
Process all ransactions
for customer Purchases
Paymenes
Monthiy 1 —_
Transachon e Current Balance
File
i ————tu= Tran: date
3 Dret trans type
Customner Inveices
Balance File ™ Purch
Paymen:
Credit adj
Diebat adj

Warnier-Orr diagrams contain braces that identify each level of modules, The
output or detail medules are shown on the right side of the braces and the control
modules on the left side, Figure shows how the payroll cvele can be illustrated with
a Warnier-Orr Diagram

PPN PO DDOD DSOS S S AGAGESLSIA A

128
System Design Concept

Functional Medeling

Begn
. Read gross pay
Begin Salaried Compute tasx
0.1y Deduct mns

O Compute net pay
Em
Hourly

(5
(0.1 Compute O T

r_"\

Pagroll L S

Cyele O Computs sp
Cempute tax
Compute net pay

1 End Write check
L Get next record
End

Fig. 32: Warnier-Orr Diagram for the Payroll Cycle

11.9. Nassi-Schneiderman Diagrams : 2

The Nassi-Schneiderman diagram is a graphic logic aid tool that causes the
analyst to work in a medular, top-down mede. The three basic elements of process,
decision, and itcration are contained within a box structure that represents the entire
module. Figure provides the layout of a Nassi-Schneiderman diagram.

Repeunon 1
e " -
- Selecuon ’,l_.—-",’
H‘M—..,____ Selection Repetmon
Sequence Sequence
Sequentce L

Fig. 33 : Layout for the Nassi-Schneiderman Diagram

21

129
12. Decision Making and Documentation ;

Decision-making is an integral part of any business no matter how small, simple
or big and complex it may be. Thus decisions have to be made and set procedures are
to be followed as the subsequent actions. Thus while analyzing and designing a business
system, analyst also needs to identify and document any decision policies or business
rules of the system being designed. There are various tools and techniques available to
the analyst for this, like decision trees, decision tables or structured English.

To analyze procedures and decisions the first step 1o be taken is to identify
conditions and actions of all possible activities. Conditions are the possibilitics or the
possible states of any given entity, which canbe a person. place, thing, or any event,
Conditions are always in a flux i.e. they keep on varying time to time and object to
abject and based only on these conditions the decisions are made therefore conditions
are also put as decision variables.

Documentation comes as an aid in this condition based decision process, As
the whole web of all the possible combination of cenditions and decisions is usually
very large and cumbersome it becomes extremely important to document these so
that there are no mistakes committed during the decision process.

Here comes the role of documenting tools, which are available to the analyst.
Tools, which are usuallv used, are decision trees, decision tables, Structured Englsh
and the various CASE tools. The basic role of these tools is to depict the various
canditions, their possible combinaticns and the subsequent decisions.

This has to be done without harming the logical structure involved. Once all of
the parameters are objectively represented the decision process becomes much
simpler, straightforward and almost error free

12.1. Decision Trees :

Decision tree is a tree like structure thar represents the various conditions and
the subsequent possible actions. It also shows the prionty in which the conditions
are to be tested or addressed. Each of its branches stands for anyone of the logical
alternatives and beeause of the branch structure, it is known as a tree

The decision sequence starts from the root of the tree that s usually on the left
of the diagram. The path to be followed to traverse the branches 1s decided by the
priority of the conditions and the respectable actions. A series of decisions are taken,
as the branches arc traversed from left to right. The nodes are the deeision junctions.
After each decision point there are next set of decisions to e considered. Thercfore
at every node of the tree represented conditions are considered to determine which
condition prevails before moving further on the path.

This decision tree representation form is very beneficial to the analyst. The

first advantage is that by using this form the analyst is able to depict all the gi\.-'t:n
parameters in a logical format which enables the simplification of the whole decision

130

Functional Modeling 131

System Design Coneepy
process as now there is a very remote chance of committing an error in the decision
process as all the options a/e clearly specified in one of the most simplest manner,

Secondly it also aids the analvst about those decisions, which can only be taken
when couple or more conditions should hold true together for there may be a case
where other conditions are relevant only if one basic condition holds true.

Action
Conditio
" Action
Condition Action
Candllk:n<
Rool Action
Aclion
Cundllim<
Condition

Action
Condih'nn<
Action

Fig. 34 : Decision Tree

In our day-to-day life, many a times we come across complex cases where the
most appropriaie action under several conditions is not apparent easily and for such
a casc a decision tree is a great aid. Hence this representation is very effective in
describing the business problems involving more then one dimension and parameters.

They also peint out the required data, which surrounds the decision process. All
the data used in the decision making should be first described and defined by the
analyst so that the system can be designed to produce correct output data.

Consider for example the discount policy of a saree manufacturer for his
customers. According to the policy the saree manufacturer give discount to his
customcrs based on the type of customer and size of their order. For the individual,
only if the order size is 12 or more, the manufacturer mives a discount of 30% and
for less than 12 sarees the discount is 30%. Whereas in case of shopkeeper or
retailers, the discount policy s different. If the order is less than 12 then there is
15% discount. For 13 to 48 sarces order, the discount is 30%, for 49 to 84 sarces
40% and for more than 85 sarces the discount is 50%. The decision policy for
discount percentage can be put in the form of a decision tree displayed in Fig. 2

The decision trees are not always the most appropriate and the best tool for the
decision making process. Representing a very complex system with this tool may
lcad to a huge number of branches with a similar number of possible paths and
options

For a complex problem, analyzing various situations 15 very difficult and can
confuse the analyst,

22

Type of Size of Discount
customer order
12 or More ~——————30%
Individual < :
Less than 12 Nil
Discount
Paolicy
for Saree 85 or more 50%
Manufacturer
opkespe 49-B4 40%
or retailer 1348 30%
Less than 12: 15%

Fig. 35 : A Sample Decision Tree

12.2. Decision: Tables :

A decision table is a table with various conditions and their corresponding actions.

Decision tree is a two dimensional matrix. Itis divided into four parts, condition
stub, action stub, condition entry, and action entry. See fig. 3. Condition stub shows
ihe various possible conditions. Condition entry is used for specifying which condition
is being analyzed. Action stub shows the various actions taken against different
conditions. And action entry is used to find out which action is taken corresponding
1o a particular set of conditions.

The steps to be taken for a certain possible condition are listed by action
statements. Action entries display what specific actions to be undertaken when
sclected ccnditions or combinations of conditions are true. At times notes are added
below the table to indicate when to use the table or to distinguish it from other
decisions tables,

‘The right side columns of the table link conditions and actions and form the
decision rules hence they state the conditions that must be fulfilled for a particular
set of actions to be taken. In the decision trees, a fixed ordered sequence is followed
in which, conditions are examined. But this is not the case here as the decision rule
incorporates all the required conditions, which must be true.

Developing Decision Tables : Before describing the steps involved in building
the decision table it is important to take a note of few important points. Every decision
should be given a name and the logic of the decision table is independent of the
sequence in which condition rules are written but the action takes place in the order
n which events occur. Wherever possible, duplication of terms and meaning should
be avoided and only the standardized language must be used. The steps of building
the concerned tables are given below.

1. Firstly figure out the most essential factors to be considered in making a
decision. This will identify the conditions involved in the decision. Only those conditions

Svstem Design Concepy

should be selected which have the potential to cither occur or

occurrences are not permissible,
2. Determine the most possible ste

not but partia]

Functional Modeling .

The first decision table for the problem stated above can be drawn as shown in
Fig. 4

Fig. 36 : Dccision Table -Discount Policy

Fig. 38 : Simplified Decision Table

i : ps that can take place unde - — =
conditions and not just under current condition. This sicp will ?dﬁl't:lf\'u 1!;;:;?;’ Ny GmEensEl Coeghlr o Eneey
3. Caleulate all the possible combinations of conditions. For every N - 1 2 3l 4 s| &l 7] &
of conditions there are 2%2+ 5 e - For every N number =
. are 2. (N times) combinations (o be considered Is person BE 7 Y | N N Y
4. Fill the decision rules in the table . - 15 = =
Entries in a decision table are ﬁlled. as Y/N and action entries are sene 1} T i :
marked as “X”. For the conditions that are immaterial a hyphen == is gcrneh:'an}r;ui" Work Experignce >=3 Y | v Y N
E:cusm;rg Itzlbic; Is mfthfr ymphﬁad by ehrnjnatiz}g and consolidating certain rules Recruit X X X %
poss 471 c_:s_arb chiminated. There are certain conditions whose values do not Don’t Recruit X X X X
affect ‘the decision and always result in the same action. These rules can be - -
consolidated into a single rule. S/W Deptt _
Exmnpie:_ (‘qn;idcr the recruitment policy of ABC Software Lid. HRDeptt X X
It the applicant is E BE then recruit otherwise not. Ifthe person is from Computer Team Leader X
Science. put him/her in the software development department and if the person is X
from non-computer science background put him/her in HR, department, If the Person Team Mem -
is from Computer Science and having experience equal to or greater than three Mgt Traince]
vears, taks huim'her as Team leader and if the experience is less than that then take Manage X
the person as Team member. If the person recruited is from non Computer Science Aclion Stub Action Entry
background. having experience less than three vears, make him'her Management " sz
. 4 e Fig. 37 : Decision Table
Trainee otherwise Manager. i = D) ey
iti ition & This table can further be refined by combining condition entries 2. 4. 6. and 8,
Condition stub Condition entry arth i 4
1 3 3 3 3 3 simplified table is displaved in fig. 3.
. Y Y Y Y ™
e -
Customer is individual [BE" - — -
Customer shopkeeper or retailer? b e " ! cs? - ‘I —— -
Order-size 85 copies or more? Y { | Work >= - - TR
Order-size 49-84 sarees 7 ¥ 1i Recrut X
Order-size 13-48 copies? . Y ! Don’t recruit - .
Order-size 12 or more”? Y ! SAW Deput . v
Order-size less than 127 Y el HR Depnt =
Allow 50% discount X| X { | Team Leader :
I = 3
Allow 40% discount X i Team Mem -
Allow 30% discount X X i | Mgt Trainee -
Allow 15% discount X E Manager
Action Stub Action Entry |i

23

134

12.3 Case Study Example :

Now we'll look at the techniques that the analyst employed to document the
various business rules of the library. Analyst identified the foll owing business rules.

(1)Procedure for Becoming a Member of Library : Anyone whose age is
18 or more than that can become a member of library. There are two types of
memberships depending upon the duration of membership. First is for 6 months and
other is for 1 vear. 6 months membership fee is Rs 900 and 1 year membership fee
is Rs 1500. The decision tree illustrating the business rule is given below.

System Design Concepy

Below 18———= Menl?g:rl;hip
Applicant’s
fom 6 Months —— ?hlgorgﬂrl
B or above———— M%r:g.:gsi
1 Year ——-n-?hzaa?lg
Fig. 39 : Decision Tree for Membership Rule
Is Age < i8 b i
Age >= 18 Y Y
Is Membership For 6 Months? Y-
Is Membership For 12 months Y
Grant Membership X X
Deny membership X
Charge membership fees Rs 1000 X
Charge membership fees Rs 2000 X

Fig. 40 : Decision Table for Membership Rule

Rule for Issuing Books : If the number of books already issued is equal to 5
then no more books is issucd to that member. If it is less than 3 then that book is

issued Equalto 5 —— Can'l issue

Books already
issued

Less than 4 ———s |ssue Book
Fig. 41 : Decision Tree for Issue of Books

24

Functional Modeling 135
Arc Book Alrcady Issued= 4 Y
Are books Alrcady issued <4 Y
Don’t Issue X
Issuc X

Fig. 42 : Decision table for Book Issue rule
Returning Books : Whenever a member returns a book, it is checked if the
book is being returned afier the due return date. If this is the case, then a fine of Rs
2 per day after the return date is charged. If the book is returned on the due date or
before that, then no fine is charged.

, Return book
Same or before Charge no fine
today’'s date

Return
date

Return Book with fine

After today’s * Fine = Rs. 12 x (todays date - return date)

Date
Fig. 43 : Decision Tree for Return of Books

I'Is Return Date <= Today's date Y

Is Return Date> Today's date Y
Return book witheut charging any fine X

Return book with fine X
Fine = Rs 5 x [Todayv’s date - Return Date]

I-"ig. 44 : Decision table for return of books

Now the analvst has a good understanding of the requirements for the new
System, we can move to the designing Design of the svstem will be discussed in the
later chapters.

12.4, Structured English :

Structured English is one more tool available to the analyst. It comes as an aid
against the problems of ambiguous language in stating condition and actions in decisions
and procedures. Here no trees or tables are emploved, rather with rarrative statements
d procedure is deseribed. Thus it does not show but states the decision rules. The
analyst is first required to identify the conditions that oceur in the process, subsequent
decisions, which are to be made and the alternative actions to be taken,

Here the steps are clearly listed in the order in which they should be taken.
There are no special symbols or formats involved unlike in the case of decision trees
and tables, also the entire procedure can be stated quickly as only English like
Slatements are used. Structured English borrows heavily from structured programming

136 Swystem Design Concepy

Functional Modeling

as it uses logical construction and imperative statements designed to carry oy
nstructions for actions. Using “IF”, “THEN", “ELSE" and “So” statement decisions
are made. In this structured description terms from the data dictionary are widely
used which makes the description compact and straight.

Developing Structured Statements: Three basic tvpes of statements are
employed to describe the process.

1. Sequence Structures - A sequence structure 1s a single step or action
included in a process. It 1S independent of the existence of any condition and when
encountered it is alwavs taken. Usually numerous such instructions are used together
to describe a process.

2. Decision Structures - Here action sequences described are often included
within decision structures that identify conditions. Therefore these structures occur
when two or more actions can be taken as per the value of a specific condition,
Once the condition 1s determined the actions are unconditional

COMPUTE DISCOUNT
See Number of Sarees
1F order is from individual
and-1f order 1s for 12 or more sarces
THEN: Discount is 50% 1
ELSE order is for fewer than 12 arees y
SO: Discount is 30%
ELSE order 1s from shopkeeper or retailer
SO-IF order is for 85 sarces or more
Discount is 50%
ELSE IF order is for 49 to 84 sarces
Discount is 40%
ELSE IF order is for 48 to 13 sarees
Mhscount is 30%
ELSE order is for less than 12 sarces
50 Discount is 13%

Fig. 45 : An example of Structured English

3. Iteration Structures- these are those structures, which are repeated, i
routing = operations such as DO WHILE statements. o

The decision siructure of example discussed in previous sections (see decision !
table in fig 3) may be given in structured English as in fig 6.

Data Dictionary :

As the name suggests the data dictionary 1s a catalog or repository of data terms
such as daia clements, data structures cte. Data dictionary 1s a collection of data to be
caprured and stored in the system, inputs to the systems and outputs generated by the
systems. So we first know more about what are these data clements and structures

" Data element : The smallest unit of data, which can not be further dtx:gfllpos:_ﬂ-
is known as a data element. For example any number digit or an alphabet will qualify

137
to be data clements. Data clement is the data at the most fundamental level. These
glements arc used to as building blocks for all other data in the system. At times data
clements are also referred as data item, elementary item or just as field, There is a
very little chance that only by them data element can convey some meaning,

Drata Structure : Data clements when clubbed together as a group make up a
data structure. These data ¢lements are related to one another and together they
stand for some meaning. Data structures are used to define or describe the system's
components.

Data dictionary entries consist of a set of details about the data used or reduced
in the system such as data flows, data star processes. For each item the dictionary
records its name, description, alias and its length. The data dictionary takes its shape
during the data flow analvsis and its contents are used even till the svstem design. It
very reasonable to know why the data dictionary is so essential. There are numerous
Important reasons.

In a system there is data volume flow in the form of reports. decuments cte. In
these transactions cither the existing data is used or new data items are created,
This poses a potential problem for the analvst and thus developing and using a well-
documented dictionary can be a great help.

Now consider a case where evervone concerned with the svstem derives
different meanings for the same data items. This problem can continue until the
meaning of all data items and others are well documented so that evervone can
refer 1o the same source and derive the same common meaning.

Documentation in data dictionary is further carried on to record about the
circumstances of the various process of the svstem. A data dictionary 1s always an
added advantage for the system analvsis. From the data dictionary one can determine
about the need of the new features or about the changes required. Thus they help in
evaluating the svstem and in locating the errors about the system deseription, which
takes place when the contents of the dictionary are themsclves not up to the mark,

CASE Tools :

A tool is any device, object or a kind of an operation used to achieve a specific
task. The complete and correct description of the system is as imporiant as the
svsten itself The analyst uses case tool to represent and assemble all the information
and the data gathered about the svstem.

Maost of the organizations have to follow some kind of procedures and they are
required to make all sorts of decisions from time to time, For the job of the analyst

25

138 System Design Coneept

m du:sc procedures and decision-making processes of the business system under
investigation are equally important ’

. Expressing busincsg processes and rules in plain text is very cumbersome and
difficult process, It requires a lot of effort. Moreover, it does not guarantee if the
readcr will understand it well, So representing these things graphically is a good
cho:ogz. Sg C{‘-\SE Tools are useful in representing business rules and procedures of
organization in graphical way. It requires less effort and it is easy to understand

. Son}c CASE tools are designed for creating new applications and not for
maintaining or enhancing existing ones hence if an organization is in a maintenance
mode, it must have a CASE tool that supports the maintenance aspect of the software
dct'rlop:. Many a times the large projects are too big to be handled by a single
analyst thus here the CASE teol must be eompatible enough to al arti ioning

allow f
of the project. = R
Efficient and better CASE tools collect a wide range of facts, diagrams, and
rul&s,. report layouts and .screen designs, The CASE tool must format the collected
data into a meaningful document ready to use,

Questions

Very short Questions:

1. What is module

2. What is data dictionary

3. What is Program flow chart
4. What 1s HIPO Chart

5. What is Wamier Orr Diagram

Short Questions

1. What are different design elements

2. What is DFD ? What are the symbols used in DFD
3. What do you mean by cohesion and coupling 7
What are the steps involved in making DFD ?
What do vou mean by control flow model ?

woa

26

Functional Modeling 139

Long Question :
1. Draw a context level model (level O DFD) for five systems with which you
are familiar. The system need not be computer based.

2. Using the Systems described in previous problem, refine each into a level 1
and level 2 DFD.
What would a simple flow diagram for 2 payroll system look like ?
4. Discuss between logical and physical views of the system. Which view is
included in a data flow diagram 7 Why ?
What role does observation play in system investigation ?
What are conditions and actions 7 What are their roles in decision analysis?
In what way do decision trees assist indecision analvsis 7 Explain how an
analyst should develop a decision tree,
8 What advantages do decision trees present for analvsis 7
9. How does the purpose of decision tables differ from that of decision trees ?
What components make up a decision tables 7
10." How do analysis develop a decision table 7
11. How a decision table is developed 7
12, How does structured English differ from the decision tree and decision
table 7 What advantage does it offer over the other two methods ?

w

Mo

aaa

8

DATA REQUIREMENT & DATA MODELS

Objectives

Data Requirements
E-R Data Modeling Technique

- E-R Model concept

Entities and Attributes

. Types of Attributes

- Entity Types

- Value Sets (domain) of Attributes
. Relationships

Degree of a Relationship Tvpe
7. Weak Entity Types

4. E-R Diagrams

5. Relation Models

\6. Onjeet Oriented Model

-

Tad

b L2) L L G
Sl o by

e B
5

1. Data Requirements :

Last chapter discusses about one part of the conceptual design process, the
functional model. The other is the data model, which discusses the data rcl‘atcd
design issues of the system. See Fig 1. The data mode! focuses on what data should
be stored in the database while the function model deals with how the data is
processed. In this chaprer, we'll look into details of data modeling,

Conceptual Design ‘
Data Model] ’ Function Maodel '

Fig. 1 : Elements of Conceptual Design

27

pata Kequirement & Data Models 141

We have already discussed the Data Flow Diagrams, which make the foundation
of the system under development. While the system is being studied, the physical
DFDs arc prepared whereas at the design phase, the basic layout of the proposed
system is depicted in the form of a logical DFD. Taking this DFD as the basis the
system is further developed. Even at the Data Modeling phase, the DFD can provide
the basis in the form of the data flows and the Data Stores depicted in the DFD of
the proposed system. The Data Stores from the DFD are picked up and based on the
data being stored by them the Data Model of the system is prepared.

Prior td data modeling, we’ll talk of basics of database design process. The
database design process can be described as a set following steps. (Also see fig. 2)

s Requirement collecuon: Here the database designer interviews database users.
By this process they are able to understand their data requirements. Results of this
process are clearly documented, In addition to this, functional requirements are

also specified Functional requirements are user defined operations or transaction

like retrievals. updates, etc., that are applied on the database.

@ Conceptual scherma: Coneeptual schema is ercated. It is the description of
data requirements of the users. It includes description of data tvpes, relationships
and constraints,

= Basic data model operations are used to specify user functional requirements.

& Actual implementation of database,

= Physical database design. [t includes design of intemnal storage structures
and files. .

I Data Requirement l

Coilection

1

Concepiual Design
(Data mode)

Implementation of
database

1

Physical database
Design

Fig. 2 : Overall database design process

In this chapter. our main concern is data model. There are various data models
available. They fall in three different groups.

= Object-based logical models

» Records-based logical models

® Phvsical-models

Object-Based Logical Models : Object-based logical models are used in
deseribing data at the logical and view levels. The main characteristic of these

142 Swystem Design CCM_:
mogccrs 1s that they provide flexible structurin 2 capabilitics and allows data constraints
to be specified explicitly. Manv different models fall into thi g
following : Lk
e Entity-relationship model
® Object-oriented model
In this chapter, we'll discuss Entity-Relationshi i i j
. pter, p model in detail, Th -
oriented model is covered in the next chapter. B
Record-Based Logical Models : Records-based logi i
Re _ ls gical models arz used in
describing data at the logical and view levels. They are used to specify the overal]

logical structure of the database and to provide a hiah ipti
! cr-level
implementation. ? e e e

In record-based models, the database is structured in fixed-for
s-.wcrat] nvpes. Each record type defines a fixed number of ﬁel::: mﬂ:::igx;dsa::
u:lach ht:iid[is usually of a ﬁ\cd length, The use of fixed-length rec’ards si:rrpliﬁc's the
Ergj;‘ca “level implementation of the database. The following models fall in this

@ Relational model

* Network model

» Hierarchical model

Rclali'un.al Medel : This model uses a collection of tables to represent data
and relationship arlnong lho_sc data. Each table has multiple columns, and each column
and cach column has a unique name. Figure shows a simple relational darabase.

Emp. No Emp. Name Age
1000 Ashish 23
2000 Saurabh 29
3500 Vikram 45
4000 Nagender 25
Emp. No DOJ
1000 15-Jul-2002
2000 11-May-2003
3500 21-Jun-2007
‘ 4000 15-Jun-2008

. Fig. 3 : A sample relational model
wmr::l\.‘vodrk Model ¢ In network database, data is represented by collection of
s. and relationships among data are represented by links, The records are

organized as a collection . e + ; :
database of arbitrary graphs. Figure :4 represent a simple network

28

pata Requirement & Data Models 143

[} (o [= |

[Ashisn | 8005

[Vikam | 8ogo [Jaipur

[Nagender | 1000 | Deihi

Fig. 4 : A sample network model

Hierarchical Model : The hicrarchical model is similar to the network model.
Like netwerk model, records and links represent data relationships among data
respectively. It differs from the network mode in that the records are organized as
collections trees rather than arbitrary graphs. Fig. 5 represents a simple database.

[Vikram | sos0 | Jaipur |

| Ashisn T soos | oemi |

INag&nderI 1000 I Deilhi I

[sse | 100000 |

Fig. 5 : A sample hierarchical database
Physical Data Models : Physical data models are used to describe data at
the lowest level. A few physical data models are in use. Two such models are:
o Unifying model
o Frame-memory model
Physical data models capture aspects of database-system implementation.

2. E-R Data Modeling Technique :

Now we know various data models available. To understand the process of
data moceling we'll study Entity Relationship model. Peter P. Chen originally
proposed the Entity' Relationship (ER) model in 1976. The ER model is a conceptual
daia mod:l that views the real world as a construct of entities and associations or
relationships between entities,

A basic component of the model is the Entity-Relationship diagram, which is
used to visually represent data objects. The ER modeling technique is frequently

144

Swystem Design Concept
used for the conceptual desi
tools employ its concepts.

ER model is easy o understand. Moreover it maps casily
The constructs used in i

gn of database applications and many database design

3 to relational model,
ER model can easily be transformed o relational tables,

onal model in the next chapter, where other data models ar
v . _ X e
discussed. In the following section. we'll look at E-R model concepts.

We can compare ER diag_ra.m with a flowchart for programs. Flow chart is a
tool for :lies1gmng a prcgra.rg: similarly ERD is a tool for designing databases. Also
an ER dlagram shows the kind and organization of the data that will be stored in the
database in the same way a flowchart chose the way a program will run,

3. E-R Model Concept 1

The ER data modeling techniques is based on the perception of a real world

that consists of a set of basic objects called entities. and of relationships among
these objects.

In ER modeling. data is described as entities. relationships, and attributes. In
the following section, entities and attributes are discussed. Later. entity tvpes, their
key attributes. relationship tvpes, their structural constraints. and weak entity types
are discussed. In the last. we will apply ER modeling to our case study problem
“Library management system™.

3.1. Entities and Attributes :

One of the basic components of ER model is entity. An entity is any
distinguishabie object about which information is stored. These objects can be
person, place. thing, cvent or a concept. Entities coniain descriptive information,
Each entity is distinct,

An entity may be physical or abstract. A person, a book. car, house, employee
etc. are all phvsical entiies whereas a company, job, or a university course, are

abstract entitics.
Employee Loan

Physical Abstract
Fig_ 6 : Physical and Abstract Entity

Another classification of entitics can be independent or dependent (strong or
weak) entity.

Entities are classified as independent or dependent (in some methodologies,
the terms vsed are strong and weak, respectively). An independent entity i§ one,
which does not rely on ancther entity for identification. A dependent entity is one
that relies on another” entity for Identification. An independent entity exists on s
own whereas dependent entity exists on the exstence of some other entity. For
example take an organization scenario. Here department is independent entity.

29

Data Requirement & Data Models

145
Department manager is a dependent entity. It exists for existing depts, There won't
be any department manager for which there is no dept.

Some entity types may not have any key attributes of their own. These are
called weak entity types. Entities belonging to a weak entity type are identified by
being related to specific entities from anather entity type in combination with some
of their attribute values. For example, take the license entity. It can't exist unless It
1S related to a person entity.

Attributes: After you identify an entity, then vou deseribe it in real terms, or
through its attributes. Attributes are basically propertics of entity. We can use
attributes for identifying and expressing entities. For example, Dept enti tv can have
Dept. Name, Dept. Id; and Dept. Manager as its attributes, A car entity can have
model no., brand name, and color as its attributes.

A particular instance of an attribute is a value. For example. “Bhaskar” is one
value of the attribute Name. Employee number 8005 uniquely identifics an employee
in a company,

The value of one or more arttributes can uniquely identifv an entity.

Empho. MName

Emplayee

Fig. 7 - Entity and its attributes
In the above figure, employee is the entity. EmpNo., Name, Designation and
Department are its attributes.
An entity set may have several attributes. Formally each entity can be deseribed

by set of <attribute, data value™> pairs. Name = “Rajul

Department = “Sales”
Employee
Designation = "Manager™

Age = 35

Fig. & : Employee enuty and us attribute values

3.2.T of Attributes : g :
aimms can be of various types. In the section, we'll look at different types

of attnibutes Attributes can be categorized as:

146 System Design Concept

* Key or non key attributes
® Required or optional

e Simple ar composite

@ Stored or derived

Key or Non-key Attributes : Attributes can be classified as identificrs or
descrlpl.ors. Identifiers, more commonly called keys or key attributes uniquely
identify an instance of an entity. If such an attribute doesn’t exist naturally, a new
attribute is defined for that purpose. for example an ID number or code. A descriptor
describes a non-unique characteristic of an entity instance.

An entity usually has an attribute whose values are distinct for each individuzl
entity. This attribute uniquely identifies the individual entity. Such an attribute is
called a kev attribute. For example, in the Employee entity tvpe, EmpNo is the key
attribute since no wo emplovees can have same emplovee number, Similarly, for
Product entity tvpe. Product is the key artribute.

There may be a case when one single attribute is not sufficient to identity
entitics. Then a combination of attributes can solve this purpose. We can form a
group of more than one attribute and use this combination as a key attribute, That is
krnown as a composite kev attribute. When identifving attributes of entities,
dentifying key annibute is very important.

Auributes that describe an entity are called non-key attributes.

Required or Optional : An attribute can be required or optionai. When it’s
required. we must have a value for it, a value must be known for cach entity
occurrence. When it’s optional, we could have a value for it, a value may be known
for each entity oczurrence. For example, there is an attribute EmpNo (for employee
no.) of entity employee. This is required attribute since here would be no employee
having no emplovee ro. Emplovee's spousc is optional attribute because an employee
mavor may not have a spouse,

Simple and Composite : Composite attributes can be divided into smaller
subparts. These subparts represent basic attributes with independent meanings of
their own. For example, take Name attributes. We can divide it into sub-parts like
First_name, Middle_name, and Last_name.

Name

First_name Middle_name Last_name

Fig. 9 : Composite attributes

30

Data Requirement & Data Maodels 147

Artributes that can’t be divided into subparts are ealled Simple or ch
auributes. For example, EmployeeNumber is a simple attribute. Age of a person is
a simple attribute,

Single-valued and Multi-valued : Attributes that ean have single value at a
particular instance of time are called single valued. A person can’t have more than
one age value. Therefore, age of a person is a single-values attribute. A multi-
valued attribute can have more than one value at one time. For example, degree of
aperson is a multi-valued attributz since a person ean have more than one degree.
Where appropriate, upper and lower bounds may be placed on the number of values
in a multi-valued attribute. For example, a bank may limit the number of addresses
recorded for a single customer to two.

Stored, Coded, or Derived : There may be a case when two or more attributes
values are related, Take the example of age. Age of a person can be can be calculated
from person’s date of birth and present date. Difference between the two gives the
value of age. In this case, age is the derived attribute. The attribute from which
another attribute value is derived is called stored attribute. In the above example,
date of birth is the stored attribute. Take another example. if we have to calculate
the interest on some principal amount for a given time, and for a particular rate of
interest, we can simply use the interest formula

Interest = NPR/TOO,
In this case. interest is the derived attribute whereas principal amount(P),
time(N) and rate of interest(R) are all stored attributes.

Derived attributes are usually created by a formula or by a summary operation
on other attributes.

A coded value vses one or more letters or numbers to represent a fact. For
example, the value Gender mught use the letters “M™ and “F" as values rather than
“Malc” and “Female™.

The attributes reflect the need for the information they provide. In the analvsis
meeting, the participants should list as many attributes as possible. Later they can
weed out those that are not applicable to the application, or those clients are not
prepared to spend the resources on to collect and maintain. The participants come
toanagreement, on which attributes belong with an entity, as well as which attributes
arc required or optional,

3.3. Entity Types :

An entity set is a set or entities or the same type that share the same properties,
orattributes. For example, ail software engineers working in the department involved
u the Internet projects can be defined as the entity set InternetGroup. The individual
entities that constitute a set are called extension of the entity set. Thus, all individual
softwarc engincers of in the Intemet projects are the extensions of the entity set
InternetGroup.

Data Reguirement & Data Models 149

!ntcmttGroup_ we will have some entries that
Therefore, entity sets Employee and InternetGroup are not disjoint.
A database usually contains groups of en

; tities that are similar. For example
emp!ayms of a company share the same attributes. However, every employee cnI:itg:
has its own values for cach attribute, An entity type defines a set of entities that

have same attributes. A name and a list of attributes describe each entity type.
Fig. 10 shows two entity types Employee and Product. Their attribute list is
also shown. A few members of cach entity type are shown.

Entity Type_ Name; EMPLOYEE PRODUCT
Aftributes. EmpNo, Name, Dept, ProdID, Mame,
Design and Cost
El . PI
(8005, “Sahil', "Sales”, “PM") (815, "FloppyDrive”, 500)
E2 P2.
(4005, “Swat”, “Software”, “SE- (314, "Keyboard™ "1200")
E3

(7234, Ajay", "Fin"," Assit™)

Entity Set (Extension)

Fig. 10 : Two entity types and some of the member entities of cach

An entity tvpe is represented in ER diagrams as rectangular box and the
corresponding attributes are shown in ovals attached to the entity type by straight
lines. See Fig. 7.

An entity tvpe is basically the schema or intension or structure for the set of
entitics that share the same structure whereas the individual entities of a particular
entity tvpe are collectively called entity set. The entity set is also called the extension
of the entity tvpe
3.4. Value Sets (Domain) of Attributes :

Each attribute of an entity type is associated with a value set. This valuc sct 1s
also called domain. The domain of an attribute is the collection of all possible values
an attribute can have.

The value set specifies the set of values that may be assigned for each individual
entity. For example, we can specify the value set for designation attribute as <“PM”,
“Assit”, “DM”, “SE">. We can specify “Name” attribute value set as <strings of
alphabetic characters separated by blank characters=. The domain of Name is a
character string.

3.5, Relationships :

After identification of entitics and their attributes, the next stage in ER data

modeling is to identify the relationships between these entities

31

We can say a relationship is any association, linkage, or connection between
the entities of interest to the business. Typically, a relationship is indicated by a verb
connecting two or more entitics. Suppose there are two entities of our library system,
member and book, then the relationship between them can be “borrows”.

Member borrows book

Each relationship has a name, degree and cardinality. These coneepts will be
discussed next,

3.6. Degree of a Relationship Type :

Relationships exhibit certain characteristics like degree, connectivity, and
cardinalitv. Once the relationships are identified their degree and cardinality are
also specified.

Degree: The degree of a relationship is the number of entities associated with
the relationship. The n-ary relationship is the general form for degree n. Special
cases ar¢ the binary, and ternary, where the degree is 2, and 3, respectively.

Binary relationships. the association between two entities are the most common
type in the real world,

Fig. 11 shows a binary
library system

and book entities of

lationship between b

A ternary relationship involves three entities and 1s used when a binary
relationship is inadequate. Many modeling appreaches recognize only binary
relationships. Ternary or n-ary relationships are decompesed into two or more binary
relationships.

Connectivity and Cardinality : By connectivity we mean how many instances
of one entity are associated with how many instances of other entity in a relationship.
Cardinality is used to specify such connectivity. :

Maonihly Member

Bomows

Fig. 11 : Binary Relationship

150 System Design Concept

The connectivity of a relationship deseribes the mapping of associated entity
instances in the relationship. The values of connectivity are “one” or “many”. The
cardinality of a relationship is the actual number of related occurrences for each of
the two entities. The basic types of connectivity for relations arc: one-to-one, ong-
to-many, and many-to-many.

A one-to-one (I: 1) relationship is when at most one instance of an entity A is
associated with one instance of entitv B. For example, each book in a library is
issued to onlv one member at a particular time.

A one-to-many {1 :N) relationship is when for one instanee of entity A, there
are zero, one. or many instances of entity B but for one instance of entity B, there is
only one instance of entitv A An example of a I'N relationships is a department has
many emplovees. each employvee is assigned to one department.

A many-to-many (M:N) relationship. sometimes called rop-speeific, is when
for one instance of entitv A, there are zero, one. or many instances of entity B and
for one instance of entity B there are zero, one, or many instances of entity A. An
example is emplovees may be assigned to no more than three projects at a time:
every project has at least two emplovees assigned to it
: Here the cardinality of the relationship from emplovees to projects is three;
from projects 1o employees. the cardinality is two. Therefore, this relationship can
be classified as a many-to-many relationship.

If a relationship can have a cardinality of zero, it is an optional relatienship. If
it must have a cardinality of at least one, the relationship is mandatory. Optional
relationships are tvpically indicated by the conditional tense. For example,

An employes may be assigned to a project. Mandatory relationships, on the
other hand. are indicated by words such as must have. For example, a student must
register for at least three courses in cach semester.

4. Designing Basic Model and E-R Diagrams :

E-R diagrams represent the schemes or the overall organization of the system.
In this section. we 1l apply the concepts of E-R modeling to our ~Library Management
Swstem” and draw its E-R diagram.

In order to begin constructing the basic model, the modeler must analyzc the
information gathered during the requirement analysis for the purpose of: and

 classifving data objects as cither entitics or attributes,

o identifving and defining relationships between entities,

« naming and defining identified entitics, attributes, and relationships,

e documenting this information in the data document

& Finally draw its ER diagram.

To accomplish these goals the modeler must analyze narratives from uscrs,
notes from meeting, policy and procedure documents, and, iF lucky, design documents
from the Current information system,

32

Data Requirement & Data Models

151

E-R diagrams Constructs : In E-R diagrams, entity types are represented
by square Sce fig 12. Relationship types are shown in diamond :;hapcd boxes attached
to the participating entity types with straight lines. Attributes are shown in ovals,
and cach attribute is attached to its entity type or relationship type by a straight line,
Multivalued attributes are shown in double ovals. Key attributes have their names
underlined. Derived attributes are shown in dotted ovals.

ENTITY TYPE

WEAK ENTITY TYPE

RELATIONSHIP TYPE

ATTRIBUTE

KEY ATTRIBUTE

MULTIVALUED ATTRIBUTE

CERNED ATTRIBUTE

TOTAL PARTICIPATION OF EZ IN R

Cardinality Ratio LN FOR ELEZINR

Structural Cansltraint (Min, Max)
On Participation Or E in R

Fig. 12 : Summary of ER diagram notation

152
Swstem Design Concept

Data Requirement & Data Models

o e v i e B e e
3 n double diamonds.

Attaching a I, M, or N on each participating edge specifies cardinality ratio of
cach binary relationship type. The participation constraint is specified by a single
line for partial participation and by double lines for total participation. The
participation constraints specify whether the existence of an entity depends on its
being related to another entity via the relationship type. If every entity of an entity
set is related to some other 2ntity set via a relationship type, then the participation
of the first entity tvpe is total. If enly few member of an eniity type is related to
some entity tvpe via a relationship type, the participation is partial. '

Naming Data Objects : The names should have the following properties:

& unique,

® have meaning to the end-user.

e contain the minimum number of words needed to uniquely and accurately
o describe the object.

For entities and attributes, names are singular nouns while relationship names

are typically verbs

E-R Diagram for Library Management System : In the library Management |

system. the following entities and attributes can be identified.

e Book -the set all the books in the library. Each book has a Book-id, Title,
Author, Price, and Available (v or n) as its attributes.

e Member-the set all the library members. The member is described by the
attributes Member _id, Name, Street. City, Zip_code, Mem_type. Mem_date (date
of membership). Expiry_date. |

« Publisher-the set of all the publishers of the books. Attributes of this entity
are Pub_id, Name, Street, City, and Ziplode,

e Supplicr-the set or all the Suppliers of the books. Attributes of this entity are
Sup_id, Name, Street, City, and Zip_code .

Assumptions: a publisher publishes a book. Supplicr supplics book to library
Members borrow the book (only issue)

Return of book is not taken into account.

33

153

<_Available” >

< Addrass i

Expiry-dute

Mem-Date

Fig. 13 : E-R Diagram of Library Management Svstem.
5. Relation Model :

. E. F. Codd proposed this model in the vear 1970 The relational database model
is the most popular data model It is very simple and casily understandable by

nformation systems professionals and end users.

Understanding a relational model is verv simple since it is very similar tc
Entity Relationship Model. In ER model data is represented as entities similarly
here data in represented in the form of relations that are depicted by use of two-
dimensional tables. Also attributes are represented as columns of the table. These
things are discussed in detail in the following section.

The basic concept in the relational model is that of a relation. In simple language,
4 relation s a two-dimensional table, Table can be used to represent some entity
mformation or some relationship between them. Even the table for an entity
mformation and table for relationship information are similar in form. Only from
the type of information given in the table can tell if the table is for entity or

154 System Design Concept

relationship. The entities and relationships. which we studied in the ER model, are
similar to relations in this model. In relational model. tables represent all the entitics
and relationships identified in ER model. Rows in the table represent records; and
columns show the attributes of the entity.

Anrnbutes
Data item | Data item?2 Data item3
Record 1
Record 2
Record 3

Table 1 : Structure of a relation.

A table exhibits certain properties. It is a column homogencous, That is, each
item in a particular column is of same tvpe. See fig 2. It shows two columns for
EmpNo and Name. In the EmpNo column it has only employee numbers that is a
numeric quantity. Similarly in Name column it has alphabetic entries. It is not
possible for EmpNo to have same non-numeric value (like alphabetic value).
Similarly for Name column only alphabetic values are allowed.

EmpNo | Name
%005 Ashish
3008 Vikram
4567 Nagendra
8796 Rahul

Table 2 : Celumns arc homogeneous

Another important property of table is each item value is atomic. That is, item
can’t be further divided For example, take a name Item. It can have first name,
middle name, or last name. Since these would be three different strings so they
can't be placed under one column, Name. All the three parts are placed in three
different columns. In this we can place them under, FirstName, MiddleName. and
LastName. Sec fig, 3
[Firs

irstNamc MiddlcName | LastName
ai Prakash Saim
Vijay Pratap Rawat
Deep Chaanna Singh

Table 3 : Table columns can have atomic values

34

Data Requircment & Data Models 155

Every table must have a primary key. Primary key is some column of the table
whose values are used to distinguish the different records of the table. Wc:‘l_l lgke
up primary key later in the session. There must be some column having distinct
value in all rows by which one can identify all rows. That is all rows should be
unique. See fig, 4,

EmpNo Ename DO!

005 Gargzi 15-Jul-1998
2012 Rohit 01-Jul-1998
8075 Rohit 15-Jul-1998
8045 Sachin 13-Jul-1998

Table 4 : Table with primary key "EmpNo” and degree “3™

In this table. EmpNo can be used as a primary key. Since it is the only column
where the values are ali distinct. Whereas in Ename there are two Rohit and in DOJ
column, 15-Jul1998 is same for three row ne 1,3, and 4. If we use DOJ as primary
key then there would be three records that have same DOJ so there won't be any
wav to distinguish these three records. For this DOJ can’t be a primany kev for this
table. For similar reasons, Ename cannot be used as primarv kev.

Next property we are going to discuss is for ordering of rows and columns
within a table. Ordering is immaterial for both rows and columns. See fig. 5. Table
(a) and (b) represent the same table.

DName

Deptld | Manager | Manager | DName| Deptld
SD 1 GARGI ROHIT HR 2
HR 2 ROHIT SWATI EDU 7
 FIN 4 SAURAR SAURAB | FIN 4
EDU 7 SWATI GARGI SD I J
(a) (B)

Table 5 : Ordering of rows and columns in a table is immaterial

Names of columns are distinct. It is not possible to have two columns having
same name in a table. Since a column specifies a attribute, having two columns
with same name mean that we are specifyving the same property in two columns,
which is not acceptable.

Total number of columns in a table specifies its degree. A table with n columns
is said to have degree n. See fig, ! Table represented there is of degree 3.

Domain - Domain is set of all possible values for an atiribute. For example
there is an Emplovee table in which there is a Designation attribute. Suppose,
Designation attribute ean take “PM™. “Trainee”, “AGM", or “Developer”. Then we
can say all these values make the domain for the attribute Designation. An attribute
represents the use of a domain within a relation. Similarly for name attribute can

156 System Design Coﬁﬂ!
take alphabetic strings. So domain forname attribute will be set of all possible valig
alphabetic strings.

Keys - Now we’ll take up another feature of relational tables. That is differeng
type of kevs. There are different types of keys. namely Primary keys, alternate
keys, etc. The different types of keys are described below.

Primary Key : Within a given relation, there can be one attribute with values
that are unique within the relation that can be used to identify the tuples of tha
relation. That .attribute is said to be primary key for that relation,

Composite Primary Key - Not every relation will have single-attribute
primary key. There can be a possibility that some combination of attribute when
taken together have the unique identification property. These attributes as a group
is called compesite primary kev. A combination consisting of a single attribute is 3
special case

Existence of such a combination is guaranteed by the fact that a relation isa |

set. Since sets don't contain duplicate elements, each tuple of a relation is unique
with respect to that relation. Hence, at least the corabination of all attributes has the
unique identification property.

In practice it is not usually necessary to involve all the attributes-some lesser
combination is normally sufficient. Thus, every relation does have a primary
{possibly composite) kev.

Tuples represent entitics in the real world. Primary key serves as a unique
identifier for those entities,

Candidate key - In a relation, there can be more than ane attribute combination
possessing the unique -identification property. These combinations, which -can act
as primary kev, are called candidate kevs.

EmpNo | SocSecurityNo| Mame Age
8005 1000076 Gargi 16
1000 907769 Saurabh 24
3000 7654444 Bhaskar 25

Table 6 : Table having “EmpNo™ and SocSccurityNo™ as candidate keys

Alternate Key - A candidate kev that is not a primary key is called an alternate
key. In fig. 6.1f EmpNo is primary key then SocSecuntyNo is the altemate key.
Integrity Rules :

1. Entity Integrity - It says that no component of a primary key may be null.
All entities must be distinguishable. That is, they must have g unique identification
of some kind. Primary keys perform umque identification function in a relational
databasc. An identifier that was whaolly null would be a contradiction in terms. It
would be like there was some entity that did not have any unique identification
That is, it was not distinguishable from other entitics. If two entities are not

35

Data Requirement & Data Models 157

distinguishable from each other, then by definition there are not two entities but only

one. .

Integrity Rule 2: Referential Integrity - The r_cfcr_cmial integrity constraint
is specified between two relations and is used to maintain the consistency among
wples of the two relations, _ -

Suppose we wish to ensure that value that appears in one rclan_on_ for a mvi::I'
set of attributes also appears for a certain set of attributes in another. This is referent
integrity.) .

The referential integrity constraint states that, gmple in one relation that refers
to another relation must refer to the existing tuple in that relation

This means that the referential integrity is a cunstm._im. specified on more than
one relation. This ensures that the consistency i1s maintained across the relations.

Table: A
Deptld DName DManager
S-10 Software Garg
H-09 HR Pajat
P-44 Personal Swami
Table: B
EmpNo Deptld EName
1000 $-10 Swati
9098 S-10 Saurabh
6578 H-09 Rajiv
5555 P44 Akash

Table 7 : Table B as Deptld as foreign key, as it acts as primary key in table A
Extensiens and Intensions - A rclational in a relational database has two
components. an extension and an intension o
Extension - The extension of a given relation is the sct of tuples appearing in
that relation at any given instance. The extension thus varies with time. It changes
as tuples are created, destroved, and updated
Relation: Emplovee at time= tl

EmpNo | EName Age Dept
2005 Gargi 22 50
SO00 Rapv 25 HR
2340 Swan 30 Fin
T6RY9 Ashush 40 Fin

System Desipn Concepy
Relation: Employee at time= 2 after adding more records

EmpNo | EName Age Dept
8005 Gargi 22 SO
2000 Rajiv 25 HR
2340 Swati 30 Fin
7689 Ashish 40 Fin
7999 Ankita 20 S0
8000 Mukesh 23 S0
Relation: Emplovee at time= (3 after deleting more records
EmpNo | EName Age Dept
8005 Gargi 2 so |
7999 | Ankita 20 so_|

Table 8 : Extensions of relation Emplovee

Intension - The intension of a given relation is independent of time. It is the
permancnt part of the relation. It corresponds to what is specified in the relational
schema. The intension thus defines all permissible extensions. The intension is a
combinztion of two things: a structure and a set of integrity constraints,

® The naming structure consists of the relation name plus the names of the
attributes (each with its associated domain name). :

* The integrity constraints can be subdivided into key constraints, referential
constraints, and other constraints.

For example :

Employes (EmpNo Number(4) Not NULL, EName € har(20), Age Mumber(2),
Dept Char(4)) '

This is the intension of Emplovee relation.

Key Constraints - Kev constraint is implied by the exisience of candidate
keys. The intension includes a specification of the attribute(s) consisting the primary
key and specification of the attribute(s) consisting alternate keys, if any. Each of
these specifications implizs a unigueness constraint (by definition of candidate key);
in addition primary key specification implies a no-nulls constraint(by integrity
rule [,

Referential Constraints - Referential constraints are constraints implied by
the existence of foreign keys. The intension includes a specification of all foreign
key in the relation. Each of these specifications implies a referential constraint (by
mtegrity rule 2).

Other constraints - Many other constraints are possible in theory.

Examples - salary=>= 10000,

36

Data Requirement & Data Models 159

Relational Algebra - Once the relationships are identified, then operations
that are applied on the relations are also identified. In relational model, the aperations
are performed with the help of relational algebra. Relational algebra is a collection
of operations on relations. Each operation takes one or more relations ag jig
operand(s) and produces another relation as its result. We can compare relational
algebra with traditional arithmetic algebra. In arithmetic algebra, there are operators
that operatc on operands(data values) and produce some result. Similarly in relational
algebra there are relational operators that operate upon relations and produce relations
as results,

Relational Algebra can be Divided into Two Groups:

1. Traditional set operators that include union, intersection, difference, and

Cartesian product.

2. Special relational operators that include selection. projection, and division,
Traditional Set Operators: .

Union :- The union of two relations A and B is the st of all tuples belonging
to either A or B (or both).
Example :

A = The set of employees whose department is S/W Development

* B = The set of employee whose age is less than 30 years

A UNION B = The set of employees whose are either in SAW development
department or having age less than 30 vears,

Intersection : The intersection of two relations A and B is the set of all tuples
tbelonging to both A and B.
Example :

A = The set of employees whose depantment is S/W Development

B = The sct of employee whose age is less than 30 years.)

A INTERSECTION B = The set of employees whose are in S/W development
department having age less than 30 vears.

Difference : The difference between two relations A and B(in that order) is
the set of all tuples belonging to A and not to B.
Example :

A = The set of employees whose department is S/W Development

B = The set of employee whose age is less than 30 years,

A MINUS B = The set of employees whose department is S/W development
and not having age less than 30 years.

Cartesian Product:- The Cartesian product of two relations A and B is the

set of all tuples ¢ such that t is the concatenation of a tuple a belonging to A and a
tuple b belonging 1o B.

The concatenation of a tuple @ = (@l am) and tuple b=(bm+1
4 bmin)- in that order- is the tuple ¢ =fal,, am.
b+l ... bmen),

160 System Design Concept

Example :

A = The set of emplovees whose department 15 S/'W Development

B = The set of employee whose age is less than 30 years.

A TIMES B = is the set of all possible emplovee no/department ids pairs.
Special Relational Operators :

Selection: The selection operator vields a *horizontal” subset of a given relation-
that is, the subset of tuples within the given relation for which a specified predicate
is satisfied.

_ The prodicm_e is expressed as a Boolean combination of terms, each term being
a simple comparison that can be established as true or false for a given tuple by
inspecting that tuple in isolation
Book WHERE Author = *Kruse”

Bookld BName Author

A-100 DataStructure | Kruse

C-12 Software Engg | Kruse

0-99 Compiler Kiuse

Emplovee WHERE Desig="Manager” AND Dept ="SD°

EmpNo EName Desig Dept
2000 Swau Manager SO
4353 Gargi Manager | S0
6666 Saurabh Manager sD

Tahle 9 : Selection Operation
Projection: The projection viclds a ‘vertical” subset of a given relation- that
is, the subsct obtamned by selecting specified attributes, in a specified left-to-right
arder, and then climinating duphicate tuples within the attributes sclected.

Example: Issue [Bookld RetumDate]

Bookld ReturnDate
5-100 20-May-99
597 31-Aug-99
0-10 31-Aug-99
0-49 02-Sep-99
E-04 15-8¢p-99

37

pata Requirement & Data Modcls 161
Book [Book Name]

Book Name
Software Concepts
Data Structures
Programming
Assembly Language
SSAD
PC-Troubleshooting
Compiler Design
Table 10 : Projection operation

~Division : The division operator divides a dividend relation A of degree m+n
by a divisor relation B of degree n, and produces a result relation of degree m.

Let A be set of pairs of values <x, v> and B a set of single values, <v>. Then

the result of dividing A by B - that is A DIVIDEDBY B- 1s the set of values x such
that the pair- <x, v> appears in A for all values v appearing i B

OENO OOR
Memberld Bookld Bookld
P-100 S5-10 S-10
P-100 5-12 S8-120-07
P-100 0-07
A-00 S-10
M-09 S-10
M-09 5-12
A-D0 5-12

I M-09 0-07
DEND DIVIDED BY DOR
MemberlD
P-100
M-09

Table 11 : Sample dwisions
Now we know about the constructs of relational data model. We also know
I how to speaify constramis and how to use relational algebra for illustrating various
functions We now take up another data model that is entirely different from relational

model

162 Swstem Design Concept

6. Object Oriented Model :

Now we know about the constructs of relational data model. We also know
how to specify constraints and how to use relational algebra for illustrating various
functions. We now take up another data model that is entirely different from relational
model. #

MNow days people are moving towards the object oriented approach in many
fields. These fields include programming, software engineering, development
technologies. implementation of databases. etc. Object oriented concepts have their
roots in the object onented programmung languages. Since programming languages
were the first to usc these concepts in practical sense. When these concepts became
widely popular and accepted, other areas started to implement these ideas in them,
It became possible due to the fact the object-oriented coneepts try to model things
as thev are. So today it is a common practice to use object-oriented concepts in data
maodeling

Object Oriented Data Modeling Concepts : As discussed carlier Object
Oriented Model (OOM) has adopted many features that were developed for object
oriented programming languages. These include obyjects, inheritance polymorphism,
and encapsulation.

In object-oriented mode! main construct is an object. (As in E-R model we
have entities and in relational model then are relations similarly we have objects in
00 data modeling. So first thing that is done in QOM 1s to identify the objects for
the systems. Examining the problem statement can do it. Other important task is to
idenuify the various operations for these abjects. It is casy to relate the objects to

the real world, In the section that follows we will try to understand the basic concepts
of OO0M data model

Objects and Object Identity : In this model, everything is modeled as objeets.
An object can be any physical or abstract thing. It can be a person, placed thing, or
a concept. An object can be -used to model the overall structure not just a part of it,
Also the behavior of the thing that is being modeled is also specified in the object.
This feature 1s called encapsulation. Encapsulation is discussed later in the chapter,
Only thing we need to know at this stage is object can store information and behavior
in the same entity i ¢ an object. Suppose a car is being modeled using this method.
Then we can have an object “Car’ that has the following information,

Car: Color, Brand. ModelNo, Gears. EngineCylinders, Capacity, No of gates,
All this information is sufficient to model any car.

All the objects should be umique. For this purpose, every object is given an
identity. Identity 1s the property of an object. which distinguishes it from all other
F'bJCCl- In OOM databases, cach object has a umque identity. This unique identity is
implemented via a umaque, system gencrated object dentifier (OID). OID is used
fntemall_\; by the system to dentity each objeet uniquely and to create and manage
inter-object references. But its value 1s not visible to the user.

38

pata Requirement & Data Models
The main propertics of OID :

163

1) It is Immutable: The value of OID for a particular object should not change,
This preserves the identity of the real world object being represented.

2) It is Used Only Once: Even if an object is removed its OID is not assigned
to other objects.

The value of OID doesn’t depend upon any attributes of the object since the
values of attributes may change OID should not base on physical address of the
object in memory since physical reorganization of the database could change the
0ID. There should be some mechanism for generating QIDs.

Another feature of OO databases is that objects may have a complex structure
is due to contain all of the significant mformation that describes the object. In
contrast, in traditional database systems, information about a complex object is
often scattered over many relations or records. See fig. 14 It lzads to loss of direct
correspondence between a real-world object and its database representation.

Real object

Reiational model
Fig. 14 : Databases store objects “whole™ not ss disassembled data elements

Object-oriented model

The internal structure of an object includes the specification of instance
variables, which hold the values, that defines the internal state of the object.

In OO databases, the values (or states) of complex objects may be constructed
from other objects. These objects may be represented as a triple t(i, ¢, v), where i is
a unique object identifier, ¢ is a constructor (that is, an indication of how the object
value is constructed), and v is the object value (or state).

There can be several constructors, depending upon or the OO system. The
basic constructors are the atom, tuple, set, list, and array constructors. There is also
a domain D that contains all basic atomic values that are directly available in the
system. These include integers, real numbers, character strings, Boolean, dates,
and any other data types that the svstem supports directly.

An objeet value v is interpreted on the basis of the value of the constructor ¢ in
the triple (1,e,v) that represents the object.

If ¢ = atom, the value is an atomic value from domain D of basic values
supported by the system.

& A & a

lad
Svstem Design Conge,
Ifc=set the value v i : - :
, S a set of objeets identifiers £
are the Identifiers (OIDs) for a set of il o
If = tuple, the value visa
where each aj is an atiribute
00 terminology) and each it 4

: e, in), whi
abjects that are typically of the samc}typ:ch
tuple of the form - L I
name [s?urm:limcs called an instance variable
i . : s an objeet identifier (O1D).
€ = hst, the value v is an ordered |ISl.0F0h- i i il i

of the same type. For ¢ = array, the valuge v, is anJ:f'raf;c:: mf&eﬁilﬁer

Consider the following example; -

01 = (i1, atom. Rohit)

02 = (i2, atom. Jai)

03 = (i3, atom, Gargi)

04 = (i4, ser. {il,i2,i3})

03 = (is, atom. SE)

06 = (i6, atom. NEPZ)

07 = (i?.l’.uph."_<DNAME_‘ij.DNUMBER:iS,LOCAT[ON'iG ENAME:3"

08 = (i%,atom. 1) o -

!_-Ic_re valug of object 4 is constructed from object vaiues of objects 01, 02, and
03. Similarly value of object 7 is constructed from the value of 01, 03, 06,, a.nd 08

i These constructors can be used to define the data structures for an 00 database
schema.

, in}

Encapsulation of Operations, Methods and Persistence : Encapsulation is
related to the concepts of abstract data tvpes and information hiding in programming
languages. Here the main idea is to define the behavior of a type {;fcbj-:x:t based on
the operations that can be externally applied to objects of that type. The internal
structure of the object is hidden. and the obiject is only accessible through a number
of predefined operations. Some operations may be used to create or destray objects;
other operations may update the object value and other may be used té retricve
parts of the object value or to appiy some calculations to the object value,

The external users of the object arz only made aware of the interface of the
abject, which defines the names and arguments of cach operation. The
implementation of the objcet is hidden from the external users; it includes the
definition of the internal data structure of the object and the implementation of the
operations that access these structures,

In OO wrminology, the interface part of cach operation is called the si gnature,
and the operanon implementation is called a method, A method is invoked by sending
a message to the object to exceute the corresponding method,

Not all objects are meant to be stored permanently in the databasc. Transient
objects exist in the executing program and disappear once the program terminates,

Persistent objects are stored in the database and persist after program rerminates,
The typical mechanism for persistence involves grving an object a unique persistent
name through whech it can be retrieved.

39

pata Requirement & Data Models 165

Inheritance : Inheritance is deriving objects from existing objects. The derived
ohjects inhierit properties from their parent object, Parent objects are those objects
from which other objects are derived. Inheritance is a way of reusing the existing
code.

Polymorphism : Polymorphism concept allows the same operator name or
symbo I to be bound to two or more different implementation of the operator,
depending on the type of objects to which the operator is applied.

Major features of OO databases can be summarized as following

OO0 databases store persistent objects permanently on secondary storage, and
allow the sharing of these objects among multiple programs and applications.

OO0 databases provide a unique system-generated object identifier for cach
object. OO databases maintain a direct correspondence between real-world and
database objects so that objects don’t lose their integnity and identify and can be
easily be identified and operated upon.

In OO databases. objects can be very complex in order to contain all significant
mformation that may be required to describe the object completely.

0O databases allow us to store both the class and state of an object between
programs. They take the responsibility for maintaining the links between stored
ubject behavior and state away from the programmer. and manage objects outside
of programs with their public and private elements intact. They also simphify the
whole process of rendering objects persistent by performing such tasks invisibly.

Persistence has to do with time i.c. a persistent object can exist bevond the -
program that created it. It also has to do with space (the location of the object may -
vary between processors, and even change its representation in the process).

Comparison : Now we know about both relational and object oriented
approach, we can now compare these two models. In this session. we compare .lhc
relational model and object oricnted model. We compare model representation
capabilities, languages, system storage structures, and integnty constraints.

Data Model Representation : Different database models differ in their
representation of relationships. In relational model, conncctions between two
relations are represented by foreign key attribute in one relation that reference the
primary kev of another relation. Individual tuples having same values in foreign
and pnimary key attribute are logically related. They are phvsically not connected
Relational model uses logical references.

In object oriented model, relationships are represented by rcfcrcnc&s via the
object identifier (OID). This is in a way similar to foreign keys but internal system
wentifiers are used rather than user-defined annbutes. The 00 model supporis -
complex object structures by usmg tuple, set, list, and other COHSU‘I—IC‘WB-_]T- supports
the speetfication of methods and the inheritance mechanism that permits creation
of new class definitions from existing ones.

166 System Design CanE

Storage Structures ; In relational model, each base relation is implemented ag
a separate file. If the docs not specify any storage structure, most RDBMS wilj
store the tuples as unordered records in the file. It allows the user to specify
dynamically on cach file a single primary or clustering index and any number of
secondary indexes. It is the responsibility of user to choose the attributes on which
the indexes are set up. Some RDBMSs give the user the option of mixing records
from several base relations together. It is uscful when related records from more
than one relation are often accessed together. This clustering of records physically
places a record from one relation followed by the related records from another
relation. In this way the related records may be retrieved in most efficient way
possible. *

00 systems provide persistent storage for complex-structured objects. They
employ indexing techniques to locate disk pages that store the object. The objects
areoften stored as byte strings, and the object structure is reconstructed after copying
the disk pages that contain the object into system buffers.

Integrity Constraints : Relational model has keys, entity integrity, and
refercntial integrity.

The constraints supported by 0O systems vary from system o system. The
inverse relationship mechanism supported by some 00 systems provides some
declarative constraints.

Data Manipulation Languages : There are languages such as SQL, QUEL,
and QBE are available for relational systems. These are based on the relational
calculus.

Query languages have been developed for 00 databascs. Work on a standard
00 madel and languages is progressing, but no complete detailed standard has
emerged as vet.

Very short Questions:

What is E-R diagram ?
What is Entity ?

What are types of Entity 7
‘What is Attribute ?

What are types of Attribute ?

PP Y

Data Requirement & Data Models

Short Questions:

MR W N -

- 167
‘What are the different types of symbols used in ER diagram ?

Whaltis relationship ? Describe types of relationship 7

What are various data models ?

What is relationship model 7

Wha_idoyw mean by integrity rules ?

Long Question :

1.
2.

-

e R

Drawa data model of any system of vour choice, using an entity-relationship
diagram,

Is there any difference between an entity tvpe and an instance of and entity
type? Discuss in details.

Draw an ERD for this sanario : An organization purchases items from a
rumber of suppliers. It keeps on inventory of each item tvpe purchased
from each supplier.

Draw an ERD for a university registrar s office. Concentrate vour modzling
=ffort mainly on the academic registration activity.

What are the three basic database model?

What is a schema? . :
Mmtmﬂ:cmlesthmgovemihcmlaﬁma]daﬁbascdwi@. .
Why do we have a query language.

Why is the use of OO data buegming?wmadvmuagcsdotheyoffer‘?
What operations are performed through relational database system? Explain
the meaning and purpose of each operator.

QaQ

40

