UNIT-1V

Graph Structure: Graph representation — Adjacency matrix, adjacency list, Warshall's
algorithm, adjacency multilist representation. Orthogonal representation of graph. Graph
traversals — bfs and dfs. Shortest path, all pairs of shortest paths, transitive closure. reflexive
transitive closure. |

UNIT- IV
5. Graph structure 99-118
5.1 Introduction 99
5.2 Graph Terminology 99
5.3 Directed Graph : : . \ : | 101
5.4 Representation of Graph . S : : : 102
5.5 Orthogonal Representation of Graph ; : _ i 105
5.6 Traversal Methods ; _ ' ; ' : 106
5.7 Shortest Pah Algorithm LY | 109

5.8 Questions . - iy

Chapter » 5

graph Stru

5.1 Introduction

ﬂanh l:ltiaf; of f type of data structure which implement the mathematical concept of graphs. Graph (V.E)
l““’“r-al.mi.__‘;_‘gﬁﬁﬁf vertices (V)and edges (E)which connect these vertices. A graph is often viewed
as generalization of the tree structure ,where instead of having a purely parent-to-child relationship between

ree ?odes, any kind of complex relationship can exist.Graph are widely used to model any situation where
entities or things are related to each other in pairs.

Figure5.1 Undirected Graph

5.2 Graph Terininol_ogy

Adjacent node: For every edge e=(u,v) that connects the node u and v, the node v and v are end points of
edge , we call u and v are adjacent to each other. u and v are neighbor of each other.
u

O .

Figure 5.2 Adjacent Node

Here u and v are adjacent each other.
Degree of node: First clear that node is alternate name of vertex. Number of edges incoming or outgoing

from vertex is called degree of vertex. Number of edges enter to a vertex is called it's incoming degree,
mber of edges leave to vertex s called outdegree of vertex. '

B < o

3

F _,_--'-_-__-____‘—-—-______
— Chapter 5 Graph Structure B 101

lar graph: A graph s sy .
Regu PR I8 5aid 10 be regutay if cacp, vertex has equal degree.For example . given graph is

lar because each ven -
e ex has 2. degree. (i called 2-regular graph,

OD——)
o'e 1 &T____ e

Figure 5.3 Degree of Node ‘ |
[

Here the degree of A node is two, In-degree of A node is Zero and Out-degree is two.
Closed Path: A path p is known as closed path if the edge has the same end-points. That is, il'vo-v“.
Simple Path: A path P is known as simple path ifall the nodes in the path are distinct with an exception thg,) & “‘ 4
¥o- I, then the path is calied as closed simple path,
a*:u? T;:,::"hfj first and the last vertices are same. A simple cycle has no repeated edges o Figure 5.5 Aegular Graph

ex st the last vertices). i
Commccted graph A graph i saide o be connected i fo any two vertces (1)in Gthere s a path fomuta. [B-rERHIAT BTAPh: As e ciscussed above that i egular graph n cach v has equal degres.
mﬂmew_lrlbemkdﬂ{immnmamummtm)mhlw.ﬁmnmdm
doesnol contain any cycle. Tree is a good example of connected graph (no cycle).

00 =« Data Structure (Using C/C++

Figure 5.4 Connected Graph
C-phucnpl:ignphinwhichmhvmmmdhmh' all i same
! h vertices is called a complete
m-lthHlfﬂWhhunwhmlhmmhmnhm:sn-lm‘ complete graph i ; Edge edge or parallel edge e =
. ok ; A . dent on the vertices.
wammmulmdmmmﬂmmm, A e m;m:m;w:ymd:}sh@ftm“ e

Figure 5.7 n-regular Graph

Figure 5.8 Multiple Edge

Size of graph: m;izgofgﬂphismcwialnumhﬂ‘ofcdgﬁin it

rected Graph

sf 200 dGI’BI ulhddima;whwhﬁchmyadphuadhuthumiyndwi\.hn
"*.‘%.?dw‘m“‘f::’im“,m,.uwomdum. For an edge (),

~ edge of a directed graph

Note: Complete graph is d graph but every 4 graph i not complete graph,

102 «

Gata Struchure [(Using C/Csx]

Figure 5.9 Directed Graph
'lhcodgshewmuumdummu-

L is kenown as the origin or imitial point of edge. Correspondingly, v is knowna as the destination o
terminal pond of edge

U is predecessor of v Correspondingly.v is successor of u.
Notes u and v are adjacent 1o each other,

5.3.1 Transitive Closure of a Directed Graph

@ A transitive closure of a
" pisth from
Ais

(a /_@
|

graph is for the answer of question of reachability. Reachability means | is there 2
anode A to node E in one or more hopalcounts)? A binary relation indicates only whether the node
s conmected to node B, whether node B is connected to node C, etc.But once transitive closure is shewm
a in fig, we can casily determine (1) time whether the node E is reachable from node A or not. Transitive
elimure used io stored as @ matrix T, 80 if T[1][5}=1. Then node 5 can be reached from node | in one hops.
Definition: For a directed graph G- (VE), where Vis set of vertices and E is the set of edges, the

transitive closure of G is a graph G*=(V,E*). In G*, for every veriex pair v,w in V there is an edgelv,w) in
E* if and only if there is a valid path v to w in G.

O—0C—O0—0E@—@®

(a) AGraph

(b) Transitive Closure

Figure 5.10 Transitive closure of a Directed Graph .
Areas where Transitve closure needed

+ Transitve closure is used to find the reachability analysis of transition networks wm
distributed and parallel system,

+ Iis used in the construction of parsing automata in compiler.
+ Recently, transitive closure computation is being used 1o evaluate recursive database queries.

5.4 Representation of Graph

There are three common ways of storing graphs in computer’s memory, They are:
« Sequential representation by using adjancey matrix.
* Linked represcntation by using an adjency list that stores the neighbours of a node using linked list:
+ Adjancey multi-list which is an extension of linked representation,

———— Mgt 3 Segnimucurs » 103

if there 5 3 SU9E Linterting dem
-lmw(hﬂma*v\qu ke
"'bm‘:ﬂlﬂmmm;_ﬁ'h' ‘-hm‘l_ftfrm"‘-mﬂ:q:‘.":m ato v Tt
gljgcey matriz will have the dimengion .y TATURG ome sige ¢
s an BAJACETCY MAtTx , the row
will comtain |, if vertice
*-’uumm.
-ﬁnﬂmm;mwﬁm‘:zT_:lu-ke:Bnmr-ru-nam-m-.—mrr‘-.c:m:mm

e Rerefore, 3 change in the order of nodes will result in a
diffierent adjacency matrix Fig 511 Mmmmmmunm marrices.

T 5 one another Tws jodet I ud o be

Mmmn#-,:.‘:‘ e

i FETLCEL. AR emeTy 3 M the adjacency
¥, et 1 each omer |f

e fodes ae not adjacent 1 each other

0 8 ‘,.:
Blo
cla
ola
-

\Df_{? ele

r

Figure 5.11 Agjacency Matrx Representation
Note: By observing the graphs we come on conclusion thas
For a simple graphithat has no loops) the adjacency matrix has Os on the diagonal.
The adj y matrix of an undi raph is symmetric.
‘The memory use of an adjacency marix is O(n"). where n is the number of nodes in the graph.
Numbsers of 15 (or non- zero entries)in an sdjacency masrix is equal 1o the number of edges in the graph.
The adja matrix for a weighted graph ins the weights of the edges connecting the nodes.
5.4.2 Adjacency List
Adjacency List is another in which graphs can be represented in the computer’s memory. This
rﬁnuunnj:::LLofdl ﬂi:c. Firthermore, every node is in tun linked to its own list that contains
the names of all other nodes that are adjacent to it
Benefits of using an adjacency list are: : .
. ni.w:gmmwﬂcawymmdmmmohpmmlanm. .
* Itis often mmmsmmuucamimmmumm of edges. That s, an
adjacency list is prefered for representing sparse graphs in the computer's memory, otherwise an
. Adﬂdh‘:m';g;!m:':::mmwwwwmﬁi!rcgfmwdusli.pgmadjmmyIisl..
in computer” memory in form of adjacency list.
af;l]gaﬁ-.c}mf:wwhmm T VRCE). Adiacency List for an undirecosd geagh
(¢) Adjacency List fo a weighted graph

104 « Data Structure (Using C/C++)

Figure 512 Adjacency List

5.4.3 Adjacency Multi-List Representation

An adjacency multi-list is a modified version of adjacency lists. Adjacency multi-list is an edge based rather
than a vertex based

representation of graphs. A multi-list representation basically consists of two partsa

» on the other hand, appears in two adjacency
at each end of the edge). For instance, the direct
adjacency list for node i . It means the nodes are shared among several lists.,

In & multi-list representation , the information about an edge (v,v) of an undirected graph can be stored
using the following attributes:

Figure 5.13 Adjacency Multi-List Representation
¥,: Avertex in megmphﬂmisconnmdaowmﬂbymcdp,
V. A vertex in the graph that i connected to vertex v, by an edge.
Link i for v: A link matpoinlslomnﬂurmdeummmgdy incident on V
Link j for v: A link that points to another node that has an edge incident on v
Consider the fig 6.13 the adjacency multi-lst for the graph can be given ag:

Edgel

| Esez

Edge 2
Edge 3 — — —H—-—'__"_-__"_”L.‘___"_-‘-_“'“ |
T T T
——-_J_,______. _ 1 Nuu Engad
Edged S

) R T

—_—
_ 3 | 4 | s Edge &
Edge 6
4] 5 | Edge7 NULL
Edge 7

|+ T *® T wu NULL

Using Adjacency multi-list given above, the adjacency list for vertices can be

construcied as shown below:

r:’m’ P e S Rl e RERAT T

0 Edge|, Edge?

1 Edgel, Edge3

2 Edge2, Edged

3 Edge 3, Edge 4, Edges

4 EdgeS, Edges, Edge?

5 Edge6

6 Edge?

5.5 Orthogonal Representation of Graph

Orﬂ:q; i hs were introduced by Lovisz (1979) in the study of the Shannon capacity
ofa mz?lrnﬁ::;:;:st:mnminn of G in Rd is an assignment £ V(G) -=Rd such that l‘(u)_md_t‘u)
are orthogonal for every pair of distinet nonadjacent nodes u and v. An onhonormal representation is an

| representation such that || f{u)| = | for every ue .\'“}}' We say that the Mhugtrna‘l mwmﬁ,“,o"
is in general position if every set of d representing vectors is linearly md-e.‘plclnd,cm, Iffisa gcnm}.posn'lm
orthogonal representation, then flu) # 0 and so f{u)/]|flu)| is a general-position onthonormal representation
in the same dimension. Another natural "nondcsemrac:.-“j property o_l’ an orthogonal m-pr_:snfnla‘tmn(:'shm
be faithfull: this means that f{u) and fiv) are orthogonal if and only if u and Ivha;u: r-Lol'I_nd}m,gn'[_ Another
Natural “nohde eneracy™ property of an onthogonal representation is to be fait uII: this _m_ﬂ:ns that [{u'_;
and f{v) are miogonll if and only if w and v are nonadjacent. The assignment £ = 0 is a trivial oc:lmgm
Fepresentati ph. In dimension n = V(G every graph G h_ns & gm}::alaposmm urt. m_urm;ln
Fepresen rysh For'n:ny e Iy enthogonal unit vectors). It is easy 1o give a faithful representation in this
same dj mm-l (“E:‘g,;:: :lszl difficult to find the smallest dimension in which a given graph G has an

mension,

Orthonormal representation.

106 4 Data Structure (usi +

Example:

owo

vesarodes —{ Jo] 1] [1] [T2L.1J

UL T T H{aTeTeT]
BHERD
Figure 5.14 Orthogonal Representation for 63
5.6 Traversal Methods

[1]2]0]0]

Mpﬁsnuuwe » 107
Remove The Eront node

srelP " J
To the processed gp,.. (37

§: Add to the raap of gt

change

tep s
N rate (STATUS=1}, ang

[End of step 3 loop)

srep 6: Exit
jphes Consider a 8raph G represents the dajhy s oz :
::ﬂ'ﬂ city A 10 city J with the miﬂhﬂmnu:‘h?w?ﬂ"ﬂg':;::“m cities of some airling, and suppose want w

A

4 K
Figure 5.15 Breadth First Search

The minimum path P can be found by using a breadth-first search beginning at city A and ending when
I d . During the execution of the search , we will also keep track of the origin of each edge by
using array ORIG together with the amray QUEUE. The steps of our search follow.

(a) Initially, add A 1o Queue and add NULL 1o ORIG as follows:

Traversing of graph means examining the nodes and
graph traversal which we will going to discusg, —
Breadth first Search

Depth first Search

5.6.1 Breadth First Search

Breadth first uses a Queue as an auxil
search uses a Stack.
During execution of breadth first al
status of N, as follows;
STATUS =1; (Ready state) The initial state of the node N,
STATUS =2; (Waiting state) The node N is on the queue or stack ,
STATUS=3; (Processed staie) The Node N has been processed.

Algorithm
Step 1: Initialize all nodes to the ready atate
Step 2: Put the starting node A in QUEUE and ¢

Hbg_ﬂfﬂhmhmmwuuMﬁnl

lary data structure to store nodes for frther processing, the Depth fird
gm.n&mNdemhhmdmmwuh

waiting 1o be processed.

(STATOS=1)

hange its status to the waitind

FRONT=1 QUEUE: A
REAR =| ORIG: O
() Remove the front clement A from QUEUE by setting FRONT=FRONT=1, and add to QUEUE the
neighbours of A as follows:
FRONT=2 QUEUE: AF.CB
= REAR =4 ORIG - OAAM
(c) Remove the front clement { from QUEUE by setting FRONT=FRONT+1, and add to QUEUE the
SEREEERS FRONT=3 QUEUE: AF.C.B.D
REAR =5 ORIG: O AAAF
W the front element C from QUEUE , end add to QUEUE the neighbours of ¢ (which are
S FRONT=4 QUEUE: AFCBD
REAR =5 ORIG : OAAAF

B from QUEVE . and add 10 QUEUE the neighbours of B as follows:
FRONT=S QUEUE: A F.C.BDG
REAR =6 ORIG : Q.a.A A FB

and add 1o QUEUE the neighbours of D as follows:

(e) Remove the front element

% EUE,
2 } (D) Remove the front element D "““QUF*ONH QUEUE:AFCBDG
: REAR -6 ORIG : OAAAFEB

state (STATUS=2))
Step 3: Repeat step 4 and 5 until QUEUE is empty

'

108 < Data Swructyre (Using UC+) e

T
ighbours of G s fol)
rom: chemont G UE and add to QUEUE the neighbours s
(&) Remone the From G M\m;fp, ot e
REAR - ORIG: OAAAFBG
(R} Remove the frant cloment & from QUEUE and sdd 1o QUEUE the neighbours of E as follgws
FRONT = § QUEUE : AF.C.BDGE)

ORIG: 0.AAAFBGE
s our final destination . We now backtrack from,)

REAR =§

Ve sop a8 soon as) s added o QUEUE , since J

using the armasy ORIG 10 find the Path. Thas
e il their child nodes in th

Space Com) 1m:u;uuman:nmuul-mﬂmuunmdmti ir chil 5 in the next levy
mm.,“;":m The .,.“mqmrgnmm-mmmmmhamkwlﬂmph.
Time compleuin: mw“‘mm_mﬁﬂmmnmmmmugh all paths to all possible node,
thus the Time complenin of this algonthm asymptotically o).

Howenvet, the time somplexiny mmqualﬁ'lvlhhwﬂewmmd every edge will
he enplored m the worst case
Com pleteness: Breadth-first search s said to be complete algorithm because if there is a solution, breadih-
first search will find it regardiess of the kind of graph. But in case of an infinite graph where there is no
peasitie solution i will diverge
Optimaliny: fireadth-first search is optimal for s graph that has edges of equal length,since it always retums
the Fesull with fhe fewest edges between stan and the goal node, But generally, in real-world applications,
we have wesghted graphs that have costs associsted with each edge,so the goal next to the start daesnat have
1o be choapest goal available

5.6.2 Depth-First Search

The Dieptt-first algonthm processed by expanding the staning node of G and then going deeper and deeper
until the goal s found.or until & node that has no children.When a dead-end is reached, the algorithm
hackiracks returning Lo the most recent node that has not been completely explored.

Algorithm

Step !0 Initlallde a.. nodes Lo the ready atate (STATUS=1)

Staj Fush. the staiting node A onto STACK and change its status to the wailing
srate pdTATUS=2)

Step 1: Repeal step 4 and ° until STACK isé ampty

Stap 4: POP the top nads N of STACK , Process H and change the status of N to the
proceased state (STATUS =1j

Step 5S¢ MIH onta STROF ®i

the neighbours of M that are still in the resdy

atate (dTATUS=1|, and hange thelr status te ths waiting state (STATUS=2).
1End af atap 3 loop]

sStap 6: Exit

Example: Consider the graph G in fig 5.13. supposs we want (0 find and print all the nodes reachable fro”
fhe node Jincluding) liself). One way to do this 1§ 10 use & st). The
steps of our follows: m soarch of G starting the node

(@) Inidally , push J onto the stack us follows:

STACK: J o g

Chapter 5 Graph Structure B 109
) Por and print the lop elemeny
ready state) as follows:

; Prim §
pop and print the top elemen; i,
ready state) as follows:

Print K STACK: DEG

pop and print the top element G, ther) :
ready tate) as follows: push omio stack all the neighbors of G (those that are in the

Print G STACK.DEC

{¢) Pop and print the top element C, then push onto stack all the neighbors of C (those that are in the
ready state) as follows:

then push. omn stack all the neighbors of | (those that are in the
STACK DK

© then push onto stack all the neignbors of K (those that are in the

(CY

Print C STACK.DEF

(f) Pop and print the top clement F, then push onto stack all the neighbors of F (those that are in the
ready state) as follows:

Print F STACK.DE

(g) Pop and print the top element E, then push oo stack all the neighbors of E (those that are in the
ready state) as follows:

Print E STACK: D
() Pop and print the 1op element D, then push onte stack all the neighbors of D (those that are in the
ready state) as follows:
Prim D STACK:

The stack is empty , 5o the depth first search of G starting at J is now complete. Accordingly. the nodes
which were printed,
- s JK.GCFED
1 space i first search
Space Complexity: The complexity of a depth
Time Complexity: The time complexity of depth-first search s _ ‘ iae
nf:dgﬁmmegmphsmumm«md.mmmku)w!upvmuo(; +ElL i
pleteness: Depth-first search is <aid to be complete algorithm If there is & solution depth-first sea}:k
find it reg‘ardless of the kind of a greph. But in case of an infinite graph.where there is no possi

it will diverge.

Shortest Pah Algorithm :
i between the vertices of a
| Here we will discussed three different algorithms 1o calculate the shortest path

#raph G.
* Minimum spanning e
+ Dijkstra’s algorithm
% Warshall's algorithm
The finst two use the adjacency list 10
Matrix (o do the same.
=
521 Minimum spanning tre€
A spanning ree of any kind of goon
“ether, A graph (i have imany

¥4

s lower than that of 3 breadth first search
proportional to the number of vertices plus

find the shortest path . Warshell's algorithm uses an adjacency

juu:wb'l"PhG mid.ig;mgumconmmahmembm

’anin'l.r“

——r—

110 <4 patastructure (Using C/C++)

& minimum spanning tree (MST) is defined as a spanning tree with weight less than or equal 1
weight of every other spanning tree. Means, a mini panning trec is a spanning tree that has weighy,
associated with its edges, and the toral weight of the tree is at a minimum.

Exam ple: Consider the weighted graph G
O—®
<

given below , this graph have many distinet spanning tree

O— & ©
O—0© &
® & O—@
—@ ©® ©

@ & @
®@ @6
O—0 e—@E e @

B

Figure 5.16
5.7.2 Prim's Algorithm

mdimtet_l g_raph.]'u'lms. build a tree that includes SVErY Vertex
the total weight of all the edges in the tree is minimized. For
as follow:

Tree vertices: Vertices that are a part of the minimum spanning tree T, .
Fringe vertices: \I’em‘pcslhumcmmllynﬂapmof'r, but are adjacent to some tree veriex,
Uumnmw:mm“mmmmmmwmm]mmism.
Algorithm

Stepl:
Step2:
Stepi:

anda:ubmnfﬂieedgcshwchawnyﬂn:
this, algorithm maintsin three sets of vertices

Select a starting vertex
Repeat stepd and 4 until there are fringe vertices

Select an edge e connecting the troe vertex and fringe vertex that has &
minimum weight. . { u 5
Stepd: Add the selected edge and the vertex to the minimum spanning tree T
StepS: EXIT

The running time of Prim's algorithm is O(E log V) where E is the number of edges and V is the number
of vertices in the graph,

Example: Consider a minimum spanning tree of the graph given in fig.

Chapter 5 Graph Serurtre B 111

Figure 5.17

mlz Aﬁdﬂle:risngi:fﬂbﬂ[ﬂtlrtﬂﬁﬂwa].m edges connecting the veriex and fringes vertices
; shown are shown dotted line. -)
ﬂ'.* Seleﬂ:‘-‘edgc J:Tﬂhgﬂum vertex and the fringe vertex that has the minium weight andm
Mg;mmuidgcmdttw‘tn:xw'ltu:mhimmapmninsmT.simﬂleﬁdgcmnmunghamc
lmwei;hlmddemw.wwcisnuafﬁn@tvmshmamwnu.
: inge verticesithat are adjacent 1o C) o)
ity mm“ﬁ:immhgﬂtm vertex and the fringe verex that has the minimum wcjgmmme
hs;mdw‘;mdmmx to the minimum spanning tree T. Since the edge connecting C and B has
T:uweighl,addBloth:ute_Nothnulafringutmhmamvmn.
¥ ices(that are adjacent to B » _
M& ;ﬁ:ﬂ%ﬁﬁimw nuiww(and the fringe vertex that hasﬂwmmn:mm welghlandlz
ml'l,wndcd!,e and the vertex to the minimum spanning tree T. Since the edge connecting B and D has
i tree. Now D is not a fringe vertex but a tree vertex. i . _
ww‘wr::r‘::eﬁli?m\wnmd.mwﬁlllmi:inﬂwnebeuuuammjmlmsmnmngtlruus
:u?:nu:ﬂldl all the n nodes are connected with n-1 edges that have minimum weight. So, the minimum

spanning tree can now be given as,

5,7.3 Kruskal's Algorithm

ini i The aim of
Kruskal's algorithm is used to find the minimum spanning tree for a connected weighted graph. 0
wuch d;;%m i.;wl‘:mda subset of edges which includes every morwgc.lnn mtmlugn of all edges in
fhve tree is minimized However, if graph is not connected , then it find the minimum spanning forest(forest is

cpllection of trees). A minimum spaaning forest is collection of mini panning trees

S 112 - Data Structure [Using (/C++) _—

Kruskal's algorithm adopt the greedy approach as it makes locally optimal choice at each stage with the
hope of fihding the global optimum.

Algorithm

Stepl: create a forest in fuch a way that each graph is separate tres.
Step2: Create a priority queue O that contain all the edges of the graph,
Stepl: Repeat steps 4 and 5 while O is not empry
Stepd: Remove an adges frem §
StepS: IF the edges obtained in stepd connects two different trees, than Badd ir
to the foreat(for Combining two trees into ocne trea).
Elaa
Discard the edge
Step 6: END

In kruskal's algorithm urtm.priwilyqucucqinumichadmlhnhlwmhimww:iﬂltukcsa
mowmmwmmm.mmhgzmeo{muwmhocslng\q,wrmsis
mcnumbworedgumd\'ism:mmberui‘mioaiulhemph.

Example: Let us solve the following by applying Kruskal's Algorithm.

Solution:
N RRESE SRR I e i 00 s o o s e connected now, hence, the last iteration number 5. gives us the optimal

+i+444+5
{‘" l:d‘.me mhmm woiild be the sum of all “idml;ivm to these cdges, as 2 + 3+ 4
_ SO the length of the shortest path by applying Kruskal's Algorithm.

EF 5 . = 1§ isthe
ED : 7 p That is, the solution is
AB D2
AE 4 AF 7 AB3
o 4 sl : = :
CF & 3
BC g fmsw weight of tree equal w 18

The various iterations would be as follows:

10

114 = Data Structure (Using €/ce+)

5.7.4 Dijkstra s Algorithm
Dijkstra’s algorithm given by a Sk jijkstra in 1939, is used to find the shomesy
e Thls algonfihon e bty o r’:f;::mwdy in OSPF(Open Shortest Path Figy
Dijkstea’s algorithm 15 used for finding the costs of the shortest paths(one having the lowest cost) frop, ,
source node to a destination node,

_ Dijkstra “s algorithm is used to find the length of an optimal path between two nodes in a graph. The 1er,,
optimal means, anyihing,shortest,cheapest,or fastest. If we start the algorithm with an initial node | then g,
distance of a node ¥ can be given as the distance from the initial node to that node.

Algorithm

1. Select the source node also called the initial nodes.

Define an empty set N that will be used to hold nodes to which a shortest path has been found.
Label the initial node with 0, and insert it into N.

Repeat steps 5 1o 7 until the destination node is in M or there are no more labeled nodes in N,
Consider each node that is not in N and is connected by an edge from the newly inserted node,
ia)lr’nh:nodemuiuminuhasmubelmsmmewnrmmdﬂhehbelofmemr,
inserted node .

(b) ELSE if the node is not in N was already labeled then SET its new label= minimum (labe| of
 mewly inserted vertex + length of edge , old label)

7. Pick anode not in N that has the smallest label assigned to it and add it to N.

B s

El!lﬂ]lk.‘ Consider the graph G is given in fig 6. . Taking d as initial node, execute tha Djkstra’s algorithm
onit.

Stepl: Set the label of D =0 and N={D)
ot Lokelaf Dl =15 o 23 ond F=<, Therefore N={DF}
o wabeiled 1E because minimum (5413,23)=18 , C has been 1e-
: coglng, vl)
otz Label of 20,B=15,G=18 Therefore, N={D,F,C,B,}
Steps: Label of D=0,B=15,G=18 and A=19(15+4) .Therefore, N={D
Step6: Label of D=0 and A=19. Thereforc, N={D,,C,B.G,A} ARGho)
Note that we have no labels for node E; this means that E is not reachable nodes that
are in N are reachable from B. S 1. Only the

NITE: The running time of Djkstra’s algorithm is O(V/*Ep),

1

—_— Cliapwes & Goge Srecare B 115

warshell's Algorithm

g;ﬂ&'f‘;i::';ﬁﬁf:Vlrm EBfe ur o sigen iV n e e of semem e o masrre of
jthint 1 find the path matriy, AT Ths s g gress w Sarimed s pee o efSowens
warshall's algorithm defines matricay w3 p 3

F o opem m by

W ibary &3 st mom £
T SN el vor me e
TAr 00N CRCAGT .4, 4,

LA)
" S v
Fig aln
+ IFPJi][}=1 then there exists an edge from node v o +
+ ICPi=1. then there exists an edge from v o v hat doesmor use WMy Sber vemew SxEept ¥
v P11, the there exists an edge from v m v fhar does 508 use 3y Sther vemen except v v v,
Note that P, is equal to the adjancency marrix G . If G comtains 1 qodes . then PP which i the path
matrix of the graph G.
It is concludes that, P [i][j] is equal io | only when either of the rwo fllowmng cses:
Mhapﬂhﬁmv.wvludnnmuwmmg;mv,._vl w, .. Therefore
P lilli}=1. :
T.ﬁlu'eisapdlﬁ'unvlmv.rdap-hv.n v, where all the nodes use v v_v,. v Therefions
P, liJl]=1 ANDP,_ [k]G}=1 _
Hence, the path matrix P, can be calculated with the formula given as:
Pli)G=P, (1G] V(P ,[G] AP GIGD
Where V indicates logical OR operation and A indicates logical AND operation.
Write a program to implement Warshell's aigorithm to find the path matrix

include <stdio.h»
include <conic.h>
void read (int ma
void displaylint =a
void mul (int matl|3

vold main()
int adj(51151, FIS1I8T.m i 00ki
clracri)i -
printf(* ‘n Enter the sumher of nodes in tha goaph: "1;
scanf (* ¥d", énli i
printf(® “n Entes the adjacency matrix :]

read (adj, nl:
clrscril:

printf(™ \n The adiacency matrix is 3 ")}
display (adf,n
for (i=0) fanp i)
1
!orti*ﬂl‘:*“- yenyy

{
LR tad) (1) 1Y)

-4 = Structure [Usi ++)

PIi) (4]=0;
alse '
BLi)[d)=1;

|
for (k=0; ken, ki)
i

for (i=0; i<nsi+s)
{

for (3=0; jen; j44)
BlLIS1=PLe) [§]

}
¥
PEINtE(™ \n The
display(p,n);
getchi();
return Oy

U RPL1 (k] && Blkllin

Path matrix "1z

}

\:oid read (int mat(5)(5), ine n) :

int i, §;
,l‘or[i-tl;im;iup
i

for{j=0;j<n; 4}
i

Printf (™\n mat[%d] [d]=*, 1,4);
g scanf ("%d”, smat[i](§]);

)
}

Void display (int mat([5](5], int n)
t

int i,4;

for{i=0zicn;is+)

printf (™wn*};
for[j-ﬂrj<n;j++]

printf (™ d\t*, mat(i](4));

|}

}

Algorithm
Step 1: [Initialize the Path Matrix) Repeat step? for I=0 to p-1
where n i3 the number of nodes in the graph. # :
Step 2: Repaat step-3 for Je0 to-n-1 .
Step 3: IF A[I][J)=0, then SET. P[I][J]=0

ELSE P[I][J]=1
[END OF LOGF]
[END OF LOOP)

12

aph Structure = 117

¢ step 4: [Calculate the paep matrix 7] g :
step 5: Repeat step & for 1up 4o n—}l "9peat step 5 for k=0 to n-1
step 6: Repeat step 7 for gup to n
stap T1: SET Pl[:]TJ:‘?p;[zlfJ]“Ih_

B e o JILEIA By () (9

.mpm Consider the graph in Fig. And itsadjancency matrix A. we can straightway calculate the path
| matrix P using the Warshell’s algorithm

The Path matrix P can be given in a single step as;

AAAR AAAA

Al 11114 Qve al o111

p= Bl1111 MEYEER

cl 1111 ‘ cl onoa

Dl 1111 e @ ol 1100

Figure 5.19
{l Thus we see, that calculating A, A, A3.......A, 1o calculate P is very slow and inefficient technique as
~ compared to warshell's technique.

i Ty

y Short @

- 1. Define Graph. .
© 2. What do you understand by simple graph?

3. Whatis connected Graph?

4. What is regular graph?

5. Define weighted and unweighted greph
| 6. Define directed graph.
g

8.

9.

10. What do you understand by spamning free?

eyt
% -:m;:m.., m:il::luw and find out the degree of each node.

118 <4 pata structure (Using C/C++)

Long Questions

. h.
Explain all method of finding the shortest path with an example of eac
Explain the graph representation techniques used by computer.
Explain Orthogonal representation of graph e
i ing ti i Igorithms
Discuss the running time complexity of all shortest find a . .
Differentiatr between depth-first search and breadth-first search traversal of a graph

SRR

13

