UNIT -1

Tree Structure: Concept and terminology, Types of tress, Binary search tree, inserting,
deleting and searching into binary search tree, implementing the insert , search and delete
azlgorithms, tree traversals, Huffman’s algorithm.

UNIT-1lI

4. Tree Structure 71-98
4.1 Introduction 71
4.2 Types Of Trees 72
4.3 Traversal of Trees 77
4.4 Binary-Search Tree 80
4.5 AVLTrees 87
4.6 M-way SearchTree 88
4.7 HeapTree 89
4.8 HauffmanTrees 89
4.9 BTree 92
410 B+Tree =
97

4.11 Questions

Chapter » &

Tree Structu

4.1 Introduction

Atree is recursively (locally) defined as a set of one or more node where one node define as root node(parent
node) and others are child of root node. Mean, a tree (T)is a collection of nodes such that nodes have a parent-

child relationship .

Figure 4.1
Here, A node is called as root node (parent node) and remaining nodes are child node.

4.1.1 BasicTerminology

Root node: The root node is the topmost node in the tree. In empty tree , root node is
Leaf-node: A node that have no children is called Leaf node or Terminal node. In fig.
m # ; k : 2 .) . '
~ Path: A sequence of consecutive edges is called a path. For e.g. the path from the root node A to D node
is given as A,B,D. | -
Ancestor node: A node that is connected to all lower-level n

node does not have any ancestors. In fig 4.1 node A does not have any ancestor.
Descendant node: A node is any successor node on any path from the node to a leaf node. Leaf node

has no descendants. In the tree given in fig 4.1, node B,E,G are the descendent of node A. Node G,H,I have
no descendents. ; 3
~ Sub-tree: If the root node is not is not NULL, then the trees T, T, and T, are called sub-trees of root node.
Level: Every node in the tree is assigned a level number in such a way that the root node is at level
0,children of the root node are at level number 1, so on. i

null.
4.1,G,H,1 are leaf_

odes is called Ancestor node. The root

(1

S Tk :
OO 3

724 ostastucture(Using¢/Ced) ———

Deplh=0

Height

Figure &.2
Hetght: The height of mode is the number of edges on the longest downward path between that nade
amd a boal.
Dhepth: The deypth of iode is the nomber of edges fhom the niade o the tree's root node

Mote: Level is depih phis |

Dregree: Degree of & wode 15 aqual to the number of children that a node has. The degree ol a leal nods
L oA

Uwsdegree: In-degoee of & mode is the number of ediges armiving at the node. The node has 0 in-degree

Omidegree: Out-degnse of & mode i the nimber of edges leaving that node. The node A has 0 in degree
T e DUELT Dok O ot degres

4.2 Types Of Trees
e e of Sl g & Bopes:
wiemeoal s

Finwses

Rinan moes

Runan Noanh tree
apession ree

& Towrmamwnt troe

4.2.1 General Trees

\m:lmmmmmhumwmlm,mwmﬁ is the root rok
pdm*im\ir:\\mlttl\\‘l.hﬁlm.:\m\hhaml except lmmw i *
o0 o mee suib-Irees Geaerad mee have a 3 e bccbines)mh:;
mamive OF ssb-rrees e sny mode map
= B I cam have I subearees.
Am\g&mﬁmw«hm-&wﬂ,u“km
m Al B & modke that alroady mﬁnmh—-uﬁmm;hn-:uww
o mwnnmﬁwﬂmmm““m Even ot it
pomssbelines K &% h*mm:m i T
Te overciems B mple s ‘mm.i“-hm“.". pare , therct®
g -“'*"‘m“*'“mmmnnhmw-tum::: s B
s FTe el

g kg e

Chapter & Tree Structure B 73

A scn:mlih:c when converted 1g 3 bi
} n ’
af!"d‘ o conversion enable the Y tiee may not endup being well formed or full but the advantages

2 Pregram "
with minor modifications, BFUMIET 10 wsc the algorithm for processes that arc used for binary trees

4,2.2 Forests

A forest is a set of n>0 disjoin trees.A set of digio; :
connectiong the root node to nodes at evel | e L

A Torest can also be defined as an
have a root, a forest on the other hand

"l::‘c;d set ol;::cm or more general trees, While a general tree must

; empty because by definition it is a set, and sets can be empty.

A lf‘““'i:ﬁnh"r converted into u tree by adding a single node as the root node of the tree.Similarly .

e Fis“;;{ﬂ shm:s":'f“’i;m“ﬁ! |h;3m;: node of the tree.A forest can also be represented by a binary
3 . a B 5. shows the i i

o ented by the empy binay e, U comesponding tree. Obviously, an emply forest can

5T

Figure 8.3 (b) Shows Corresponding Tree

5
of

Flgure 4.3 (a) Shows a forest

4.2.3 Binary Tree

i “Iar tree is defined as collection of nodes. In a binary tree the topmost element is called the root node
has 0.1 or at most 2 ehildren, In other words binary tree is either empty(root=null) or consists of a node
called root node with twe binary tree called left sub-tree and right sub-tree. A node that has zero children is

Figure A.A(D) Linked Datastructure of Binary Tree

% 4 ocotasvauemngUte)

&£231 Terminology

Farent: 1 & node in binary tree has 2 lefl successor and right successor , then node is called parent of |4
A2 D vaseevsr. Every nede oiher thim root node has a parent. ;

Level mumber: ;yﬂ} nude in & binary tree is assigned a level number. The rrot node iy def-_neq
=t Lewel 0. Toe left child and righr child of root node is defined at Level 1, w0 on. Every node j, u
e level higher than i parens. So all child nodes are defined 10 have level number as parent's |gy,
number = |

Degree of a node: Humber of children of a node is called degree of that node. The degree of leaf nog,
1 e et lead node iy terminal node so no child and no degree. ;

Sibling: All nodes ot vame level and share same parent are called as siblings. For example in fig. § afy
modes 2and 3 4and 5,6 and 7 % and 9; are siblings,

Lﬂ!lm:a\mdrduhlmthilﬁmiln!hdnhfnnd:wmmhllm-

Similar binary trees: Suppose two binary tree T T" are similar binary tree if both have same structyre

@) G

N
® © ®
o/J 0

© ()

Tree T, Trea T'

Figure 4.5 Similar Binary Tree
Path: A sequence of consecutive cdges.
Depih: The depth of a node is the number of edges from root 1o that node. The depth of rool node
s rEre,

Height of Tree: The height of a node is the number of
height of tree is the height of root.A tree with only a root node has a he f1. A binary i
b hias ui least h nodes and stmost 2% 1 nodes, This is because every hv.:‘-:lu?h;:: Jeast :: :‘.rf::
can have at must 2 nodes. So, if every level has two nodes then a tree with height b will have at most 2*1
nudes as at level Othere is only one element called the root. The heighy of
Ieant leigg (0 ¢ 1) and at most n, - ioary toe whts nodes e #
In-degree/Oul-degree; In-degree uf a node is the number of arriy
In-degree. Whereas oul-degree of node is the number of leaving
has o oul degree |
Hinery trees are commonly used o im,
binary heaps

edges from the node 1o the deepest leaf, The

ing edges at node. Root node has 10
odges from that node. Leaf node of a tre¢

plement binary search rees, exprossion iroes toumament trees s0d

Chapter & Tree Structure B 75

4.2.3.2 Complete Binary Treey
A complete Binary wee has two propen,

1. In complewe binar, tree ., level ;
2. All node appear as fa 1eft oy 7" T 2% 16¥el is compiately filed with nodes

Figures6 Complete Binary Tree
In fig. 4.6, tree has exactly 10 nodes. We have purposly labelled from | 1o 10 so that it is easy for the
reader W find the parent node, the right child node, and left child node of the given node. The formula given
as if k is a parent node, them its left child can be calculation as
2#k
and its right child can be calculated as
2uk+|
For example the left child of node 4 is B (2<4)
and right child of node 4 s 9 (2-451)
similarly , the parent of the node k can be cabouted as
k2|
like the parent node of node 4 is [4/2) = 2, Yes, it is
The Height of a tree T_in having exactly n node is given as.
H_~llog (n+ 1)

4233 Full Binary Tree

A Tull binary tree (sometimes proper binary tree o 2-tree)is a tree in which every node other than the leave:
has two leaves.

Figure 4.7 Full Binary Tree

76 4 Data Structure (Using C/C++ B

4.2.3.4 Extended Binary Tree " in the tree has either ng gh;

A binary tree T is said to be an extended binary w.:ugl-ll'l“} Irm;;h;mes having ::::lliq
exactly two children Nodes having two children are called interna

are called external nodes.

Figure 4.8 (a) & (b)

In fig. 4.8, internal nodes are represented using and extemal nodes are ;wpn:stmed a5 SQUArCS,
To convent a binary tree into an extended tree, every emply sub-tre¢ is replaced by new node. The
. original nodes in tree are internal node and the new node are added called external nodes,

4.2.4 Binary Search Tree
Binary search tree is also ordered b
internal node.say X store an elem
1o X and element of right subtree
Fig. 4.9 Binery search tree

inary tree or sorted binary tree, Binary search tree has a property that ,each
ent such that the element stored in left subtree of of X are less than or equal

of X are greater than or equal to X. { Binery search tree will discussed Jater)

Figure 4.9 Binary Search Tree :
4.2.5 Expression Tree

Bianary tree has an application to store’ algebraic express;
expression given as: :

ions in it. For example consider the algebrai

Chapter 4 Tree Structure 77

Exp (A By ((C-Dy(EFy)
This expression can be represented using a binary tree as shown in fig.

oy

Figure 4,10 Expression Tree
4.2.6 Tournament Trees
Tounament tree: also called a selection tree where each external node is a player and each internal node represents
the winner of the match played between the players represented by its children These tournament trees also called

a5 winner trees because they are being used to record the winner at each level, We can also have a loser tree that
records the Joser at each level.

Figure 411 Toumament Tree %

i i hose names are represented
+ Consider the tournament tree as shown above. There are 8 players in total w ¢ ar
using a,b,c,d.e.f,g and h. Inround |, aand b ; c and d ; ¢ and f, and finally g and h play against each other. In
round 2, thé winners of round 1 ,i.e. a,dse and g play against mhlmhc:l. In round 3, the winners ot'm.l.nld 2,
8 and e play against each other. Whosoever wins is declared the winner . In the tree, tharomno.de a specifies
winner,)

4.3 Traversal of Trees

. E sl h node in the tree exactly once in a systematic order,
Travers tree means @ process of visiting each no ; ; :

Unlike 'F”hm“w:,mmmm“mmmmwﬂm,mmmmmwrm
M&L‘,mmdﬁhqugmmﬂﬁmwmfwmm.mm;lmm's each node

8 4 ostasvovre(usingte —— —————

_ Traversing can be done in two myp,.
of mee., e fides a¢ sored in daca sactune such as Soack of Quéne scross level(breadth
wg_.‘-..-s.',.m:da:si_\\.;m:fm.#ﬁmﬂ&naﬂmdummﬁ level ﬁmml
4.3.1 Depth-First-Search

Tree cam e searchad i thowe wavs. pre-onder, in-onder and post-order, These searching technique refered 1
&5 Jepeh-fine seamphy

43.1.1 Pre-order Traversal

To Taverse 2 non-emzey binany Tee in pre-order the following operations are performed recursively at eacy
Visting the root node

Traversing the left subtree. and finally

Traversing the right subtree.

Gr =

Figure 8.12 Pre-order Traversal

Consider the fig.4.12 . The pre-order traversal of the tree is given asF,B,A,D,C,
in hﬁﬁunmhgmmmﬁmwmsmmed.lnﬂmtlzi;m
uhosemmhn.wnwﬂ.Nmkﬂmkammwﬁgmmﬂi&
i.E.CWﬁghlmd:isE.Nuwmwemrhglnwhﬂuofrme‘Gis

JE.G,LH. As we study that
node. Move to left subtree
is D. D node has a left node

traversed then [then H.
Algorithm for pre-order traversal
Stepl: Repeat steps 2 to 4 while TREE !=NULL
Stepl: write TREE.>DATA
Step3: PREORDER (TREE->LEFT)
Stepd: PRECRDER [TREE=->RIGHT)
[END OF LOOP)

Steps: END
Mmumﬂﬂgmmmmwinmmamﬁxmuﬁmfmmm ' Consider
i 5 tree. Fore,
the expression given below when we traversal the elements of 0 tree of fig. 4,10 using Fg.m:- traversal

alglorithm the expression that we get is in prefix

*+AB/-CD"EF (from fig. 4.10)

-‘_‘_'_‘—‘—-—.
43.1.2 In-Order Traversal

To WFAVErSE 3 MON-EMPAY binary tree
node. The algorithm works ag..

1. Traversing the left sub-tree.

2. Visiting the root node , finally
3. Traversing the right sub-tree_

Consider the fig 4.12 The in-onder raversal of the tree is given as AB.C.D.EF.G.H.I

As we study in In-order traversing method thas firs: left sub-tree is traversing , here F as a root node has
lef sub-tree B whase lef node is A which is frst traversed. A is siored in Stack . Ace. to traversing method
\which is B, stored it in Stack Next after traversing oot node move to right sub-
e ng,LzﬁnndcorID:sc gn:ummhm!r_mmnwmofn i E stored in stack.In this
way Left sub-tree of F is traversed . now tum 1o visit root noded.e F . Now move 1o right sub tree of F and
visiting in above stated manner.

— Chapter & TreeStructure B 79

0 h-order the following operations are performed recursively at each

Algorithm for in-order traversal

Stepl: Repeat steps 2 to §
Step2: INORDER [TREE->1
Stepid: write TREE.>DATR
Stepd: INCRDER(TREE->RIGHT)

[ERD OF Loop]
Step5: END

In-Order traversal algorithm is usually used to display the elements of Binary Search tree. Here all the
elements with a value lower than a given value acessed before the elements with a higher value.

4.3.1.5 Post-order Traversal

To traverse a non-empty binary tree in pre-order the following operations are performed recursively at each
node. The algorithm works as:-

1. Traversing the left subtree

2., Traversing the right sub-tree and finally

3. Visiting the root node.

Consider the fig 4.12 The Post-order traversal of the tree is given as A.C.E.D.BH.LGF

First have to travers left subtree of F which is root with B node. B node has left node A which is traversel
hlﬂlmmdinsmclg,Ar.:_lna!gu.Ibvttlolhzl‘lgh'tthiﬂofﬂwhichkD.Dhasakﬂchildcmhjthis
Stored in stack and then E has right child. After that D is stored then B. Now move 10 the right subtree of F
which has child G. G has a | node as a parent of H, This time H is stored continue as 1, G, F. So, A, C, E, D,
B, H, I, G, F sequence we get.

Algorithm for post-order traversal
Stepl: Repeat steps 2 to 4 while TREE !=MULL
Step2: POSTORDER(TREE-LEET)
Stepl: POSTORDER (TREE->RIGHT)
Stepd: Write THEE->DATA
! [END OF LOOF]
Steps: END

B0 4 Data Structure (Using C/Ces. :

4.3.2 Breadth-First Search ing 1o th

Ttis also called as Level-order traversal. In this all nodes ata level are bf:;:o;jnlsn:de: ::T! iy
Consider the fig. 4.12. Traversal order is F,B.G,A,D.LC.E.H. As above stat 1C, E, H. {le 'Tmf‘

is visited first. Next all nodes of Level | are visited(B.G). Then Level 2(4,D.1) and last C. E, H. {level 3,

—_

4.4 Binary-Search Tree
We have already discussed binary trees.A binary scarch tree , is an ordered binary tree in which the nodes o7,
mngedh:naﬂetlnabhlafy-smudim.d[mhﬂkﬁmmiwlmmmuﬂh”m
node. Cormespondingly, all the nodes in right substree have a value efther greater than or equal (0 root g,
The same rule applicable to every sub-tree in the tree. In binary search tree every node contain onc value any
two pointers left and right, which point to the node’s left and right sub-trees, respectively, As shown in fig. 4,13

Figure 4.13

Look at the figure. The root node is 39. The left sub-tree of tree is 27 in value which is less than
39, the right node of root node is 45 which is greater than root node. When we jump on left sub-tree
whose root node is 27 . The left node of 27 are 10,9.19,21 all are less than 27. The right node of 27
arc 28,2936 all are greater than 27. Similiarly when saw the right subtree of node 39 , whose roat
node is 45. The left nodes of 45 are 40 which is less than 45, the right nodes of 45 are 54,59,65 and
60 all are greater than 45,
Such type of trees are called binary search tree.
When data changes rapidly . in such cases, Binary scarch tree speed up the insertion and deletion
operations in O{log.n) time. Binary search tree is efficient data structure especially when compared wilh
sorted linear armays and linked lists. In sorted array, searching can be done in O(log n) time, but insertions
and deletions are quite expensive .In contrast. inserting and deleting elements in a linked list i easier , bU!
searching for an element is done in O{n) time.
However, in worst case , a binary search iree will take Oinjtime 10 search for an element The worst case
occur when the tree is linear order. as given in fig. 4.14 :

(a) Left Skewed,

{b) Right skewed binary search tree.

thapter & Tree Strucrure B Bl

_—
eE
4
-
1a (s
.__'j.
® G
g
Figure &.14 (a) Left Skewed [b) Right Skewed

4.4.1 Operations on Binary Search Tree
Here we discuss the list of operations which can be performed on Binary search wree.

44.1.1 Searching for a Node in Binary Search Tree

Searching means to find a value whether present or not. The scarching process starts with root node. First it

check either the tree is empty or not. If Tree is empty it means value which we searching is not be present. So
searching algorithm terminates. However , if tree have a nodes, then the search function checks 1o see if the
key value of the current node is equal to the value of the current node is equal to the value is searched. 1f not,
it checks if the value to be searched for is less than the value of the current node . in which case it should be
recursively called on the left child. In case the value is greater than the value of the current node it shoald be

recursively called on the right node.

Step-3 !
Figure .15 Searchung 3 nade with value 12 in the given binary search tree.

Look figure. The figre shows how 2 binary tree s searched o find 2 specific node.First see how the
tree traversed 1o find a node with 3 value 2.

Algorithm 1o seareh for & gives pode
Bsarch® lemest [(THEE,VAL)
Trapl: If TRER-- LETA = VAL OF TREE~NULL
FETURE TREE
IF L - TFEE -» LATA
FETUFN sesrohflesarns (TREE->LEFT, VAL)
EL3E
FETIFN sesrchilemmnt (TREE=>RIGHT, TAL)
(EnG % 1P
[EME GF IF;
Step Z; END
44.1.2 |meriing a New node in a Binary Search Tree
mmnquawmummumam search tree. The initial code is similar 0
search function. This is because we first 1o find the location where the new node has 1o be insert . The insertion
fumkmcﬁnwﬂﬁmdduuujﬁﬂtﬁnmmmﬂmk:ﬂhdwhm
should return the new tree pointer, .
Am-hm--ﬁuﬂhlﬂlﬁrymﬁm
IMSEPT (TREE, VAL)
Btapl: IF TFEE= MULL
Alloccate memory for TREE

JET TREEE - [ATA=VAL
TPRE-wLEFT=TREE=+EIGHT =HULL

i beiSE
IF VAL < TPEE--UATA
Ingert ‘Tﬁhﬁ-}j’!ﬂ'; VAL
ELEE
Ingsart (TREE-XRKIGIHT AL}
END OF IF]

< Case2:

IEND OF IF)

10

[hapter & Tree Swucture » B3

ry::-\:. oo of wee B NULL I m s NULL, e algorithm
Wi m‘f““‘f’“*ﬂ*hmm.mu#m-mﬁuﬁ
et by £ "n”“mﬂhhmd:bﬂq—mm;m:ﬁm.m

D ki = “h’m*“*mmmmuumm-nmhp—hh

The insert Wmmmmhﬂmk . ;
of the -]

“wmm&hwm-ﬂ'ﬂ;m:m:ﬁ:m tree in the worst case Bt takes Olog 0)
&A1 m‘mmh,mh
i S <tion used 1o delete 3 node from bimary search tree. However atmost care: should be takien that
mﬂdhﬂjwmﬁmﬂmhywm‘,‘gdﬂ:‘,’h howmode s S
2 banary tree. G deleted
Case 1. Deleting A Node That Has No Childrea
Look = the binary scarch wree in figd.16

L)

Figure .15 Delete node & from the binary searth ree

H we have 1o delete node 4 , we can easily remove it without any s
Deleting A Node With One Child
Tuhﬂeuhan,mema'ld&ukmhahdﬂdafm\gru In other words, replace the node
with its child. Now, if node is left child of its parent , the node’s child mmhﬁmﬂdhm&‘:
parent. Correspondingly, if the node is the right child of its parent , the node’s child becomes the right child
of the node’s parent. o

Fig. shows how deletion of 14 is handle

84 4 Data Structure (Using C/Ce+)

Case 3: Deleting A Node With Two Children
To handle such case, replace the node's value with its fm-order

successor can be deleted using any of the above cases.
fig. shows how deletion of 6 is handle.

Step (3)

Figure 4.18 Step 1 & 2 Deleting A Node With Two Children
Algorithm to delete u node from a binary search tree
Delete (TREE,VAL)
Stepl: IF TREE =NULL
. Write "VAL mot found in the tree”
ELSE IF VAL< THEE -» DATA
DELETE (TREE->LEFT ,VAL)
ELSE IF VAL > TREE->DATA
DELETE (TREE->RIGHT ,VAL)
ELSE IF TREE->LEFT amp TREE->RIGHT
SET TEMP=findLargestiode (TREE->LEFT)
SET TREE-> DATA=TEMP-3DATA
DELETE (TREE->LEFT, TEMP->DATA)
ELSE
SET TEMP ~TREE
IF TREE->LEFT=NULL AND TREE->RIGHT
SET TREE=NULL
ELSE IF TREE ->LEFT != NULL

=HULL .

(largest value in the lefy gy
trec) or in-order successor (the smallest value in the right sub-tree). The in-order predecessor and in-opge,

1

,.-'-'-_-___-_-_‘—-—-—.______‘_
SET TREE=THEE->Lppp
ELSE
SET
[END
FREE TEMP
[EHD OF IF)
step 2: END
The delete function requires fime

B Proportional 1o the height of the tree in the worst case. It takes O(logn)
time to execute in the average case and (A(n) time in the woril’lca.:e. e

4.4.1.4 Determining the Height of 3 Binary Search Tree

To determine the height of BST, we have to cal
is greater, | is added to it.

Chapter 4 TreeStructure B 85

culate the height of right sub-tree and left sub-tree whichever

0

o e

Figure 4,19
For example. In given figure, height of left sub-tree is greater than than the righr sub-tree.
The height of tree=(height of left substree)+1= 2+1=3

Algorithm to find the height of Tree

Height (TREE)
Stepl: IF TREE=NULL
Return 0
ELSE
SET LeftHelght=Helight (TREE->LEFT)
SET RightHeight=Height (TREE->RIGHT)
IF LeftHeight.RightHeight
Return LeftHeight+l
ELSE
Return RightHeight+l
(END OF IF)
[END OF IF)
Step2: END

In step 1 we check it the current node of tree=NULL.I{ the condition is true, then 0 is returned to the
calling code.otherwise for every node, we redursively call the algorithm to calculate the height of its left sub-
hight of the tree at that node is given by adding 1 to the height of the left sub-tree of the height or the height
of right sub-tree, which ever is greater.

%4.1.5 Determinig The Number Of Nodes

Toca internal nodes and non-leaf nodes, we count the number of internal node in
) mk::,mh mm: :;dmﬂm:;.mndm 1 to it(1 is added for the root node).

06 « ala Stiuscture (Using (/€ +)

; il
Numbor af nodes= total ndes (left sub-uree) total node (rlght mr Ilmi:lll subiiree, S0 tota| Ty
i iven figure. 419 the number of nodes in lefl sub-tree are 3 and 1 i
OF thwles aro N1 e pes

Algorithm 1o culeulite number of nodes

totalMoilas

[illl'}'.
Stop 1oy

TREE=NL]
WETInKN 0
ELYE

BETURN totalbodes ITHEE-*LEFT)
tLotalNedes (TREE - SRIGHT) « }
LEND OF 3§

dop 2t END

44,16 Determining the Number of Internal Nodes
To calculate the 1ol number of intemal nodes of non-leaf nodes, we count the number of internal nodes jn
the left sub-tree and right sub-tree and add | 10 it (1 is added for the root node)
Number of intermal node = total internal node (lefl sub-tree)+ total internal node (right sub-trec)
consider fig. 4.20 the rotal number of intemal nodes in the tree can be calculated as
Total intemal nodes of lefl stib-froe =)
Total intemal nodes of right sub-tree « 3
Total internal nodes of tree - (0 3y =g

%) G
ONNO

Figure 4.20 Binary Search Tree

Algorithm to ealculate the total number of internal nodes in BST totg] Internal
Step l: IF TREE = NyLL
Return 0
(END OF 1F)
IF TREE — LEFT = NULL AND TREE - RIGHT = HOULL
Return 0
ELSE

Return total intecnal Wodes | TREE —

Nodes (Tree)

LEFT)+ total Internal Wodes [TREE -
RIGHT)+1 :
[ERD OF IF)
STEP 2: END

12

—

____Chapter 4 TreeStructure B 87

AT DEtmIning the Nygmpe, 01 External No ey
is empty or Null, theq th
L:::::, |||'t!!l.‘fIII&| nodes in the
external node will be one. Cong
*“mmcd us
Total external node in Jefy sub-tree = |
Total extemal node in righy Sub-tree =
Total external node in tree - 145 |

© BUmber of wxiapmy) neides will be sero. If tree have nodes, we add the
IR sub-tree. and ihe FIght sub-tree I tree has only one nede | in such case
Mer the tree in fig 4 21,

The total number of Fxternal nodes in the tree can

Algorithm to calculate total numper of external

nodes
toujzxtqrna:lllnd-:m*.'.‘ﬁ):i‘..
step Ll: I1F TREE=NuLL
RETURH
ELSE IF TF!EE—JLEE‘T-HULL RND TREE->RIGHT=HTLL
RETURH 1
ELSE

RETURN totalExternallicdes o7
totalBxternallicdes {TREE=>AT
[END OF IF)
Step 2Z: END

REE->LEFT] +

GHT)

4.5 AVLTrees

AnAVL Tree is another balanced binary search tree.Named after, Adelson, Velskii and Landis,they were the
first dynamically balanced binary search trees 1o be propased. [n an AVL trees the heights of wo sub-trees of
anode may differ by at most one . Due tothis property, the AVL trees is als0 known as Height-balanced tree.
The key advantages of using an

AVL tree is that it takes O{log n) time to perform search .inseri, and delete
operations in an average ase as well as the worst case becais . .__SWwO{Iogn.
e e —

Figure 4.21 (a) left-heavy AVLTree (b) right-heawy tree

The structure of AVL tree is much similar to binary search tree but with little difference i.¢. balance factor.
Balance factor = Height (left sub-tree)- Height (right sub-tree) . .

Tl lfbﬂ“mt:ﬁc‘b::'ﬁamdth 1, then it means that the left subtree of the tree is one level higher than
?E"m::}:m Ot il B i height of the leR subetree is equal to the
I:;:hﬂ.ilmﬂg::g?h 1, then it means that the left-sub tree of the tree is ane level lower than that

Rbangs mbt 72 have no children 5o their balance factor=0. Node

a".h mﬁm:::e:‘dxm :Jm:jl:&doﬂuﬂwh tree =1 whereas the height of the right sub-

ane

.

——

88 4 pana Structure (Using C/C+)

o Thus,is balance factor=1. Look a node 36 it has ¢ lefisub-ree with beight =Z- wheroeas the heigyy
of right sub-tree =1, Thus _its balance factor =2-1=1 . Similiarly. the balance factor i

63 has abalance factor 0 (1-1)

4.6 _M-way Search Tree

As we discussed that binary search tree has a value and two pointer left and right . which point 1o the nodg',
left and right sub-trees repectively Same concept with multi-way search II'EIB{M—wI'y tree) which has M.
values per node and M sub trees. In such 2 tree M is called the fthe trec. In binary search tree degre,
is always 2, 50 have onc value and two sub-trees. So we can 2y, in Meway tree every internal node consiss
of pointers to M sub-trees and contain M-1 keys, where M>2.

Clel®T+TeTw -1~
I

|

Figure &.22
In the structure of an M-way search tree, shown in fig 422 P P, _.P_are pointers to the node's sub-tress
and K, K; K., are the key values of the node. All the key values 2re stored in ascending order. That is. K
K, for0< i=n-2
In an M-Wtyswchlru.hﬁmmmmmmmlilvﬂmmdMsub-m,
Rather, the node can have anywhere from 1 to M-1 values, and the number of sub-trees can vary from 0(for
a leaf node jwi*‘i‘wtﬂ'tihﬁ:mhdkﬂﬂhﬁmﬂﬂm.ﬂkmaﬁxﬁwihﬂilmﬂdﬁm
howmwktyvuuesmhmredhﬂ»nﬂde.lngimﬁm423Mwm:huwofnrder.M=3.ma
Mmmam@mdmaﬁ%ﬂmmhp“mmmmm.

Figure .23 M-way search tree of order 3

Properties of M-way search tree:
1. Key values in the sub-pointed by P, are less than the key value K, . Similiarly, all the key values in
mesub-n-upninwdbyplmkﬂmmk,,wmmdmfom.%.geuﬂhedmkkﬂmmlmm
valmhlhlﬂ)—&upuinltdby?,mlmmmkl.whmﬂsjﬂ-l.

Z Kgyuhahmmmimwbyr,mmmﬁekcynlmu‘,stnimly,anm;kgymm
inlﬂesub-ﬂ'upoiﬁedbyP,ngmmk,.wmfmﬁ.wludmuhmmum
values in the sab-tree pointed by P, are greater than K. , where O<i<n. | e

ol Figure .24 Max-heap

- [F Bis achild of A, then key(A)= key(B)
mhm:m:ﬂmelmmuncmmmuucid*ngrmmhmorequmulmmuhs

left and right child Such a tree called as Binary Heap. ‘
Themnndzhlsﬂbeheiymkrywiuehmekmmm;pmmmbknwnum-hqv.
Simila.rly.:lemmlsmtvqynofcwillheI:ssm:l'eqmlmtb:ehmemuiukﬁWHth:hjkd.Thus

the root has the lowest key value.Such heap is called as minhean

Figure4.25 Min-heap

A bi i ﬁllmnmuthwhichehmmmbelddedmdnmll yhmoru_lymeelel?unl
ﬂkﬁ?n:::etgoudhwﬁmwmmmpmdmmhmnhmmum
efficient data structure , but a binary heap is more space efficient and simpler.

4.8 Hauffman Trees

Entrop ; jon technique to compress digital data by representing

) -“deﬁtgmmpmmwmmww
pattems fiman coding algorithm is developed by David A Hauffman. The key idea

3. In an M-way search tree, every mb-uukdme-wqmm-dhlhnhmm

13

o ocourring
Eslhllandwwudhe-

90 4 Data Structure (Using C/Ce+]

ing shorter strings of iy,
behind Hauffman algorithm is that it encodes the most common characiers using than
those used for less common source characters. . 3
The algorithm works by creating a binary tree of nodes that are stored in amay. A node can be cither ,
leaf node or an internal node . - . .
Technigue: Given n nodes and their weights, the Hauffman algorithm “m::dt:o“nm"ﬁ.
minimum -weighted path length. The tree begins Wﬂﬂiﬂﬁlmm“ﬁmﬁ*"ﬁ, weight . In such Wit
the smallest weight. such that the new node's weight is equal to the sum of chi b Iy‘nod: i Wiy,
twa nades are merged into one node. This process is going on uniil the tree has only one node.Siich 4 g,
with only one node is known as Hauffman tree.
HaufMman algo:- -
Step 1: create a leaf node for each character, Add the character and its weight or prequency of occurence
ta the priority queue, _
Step 2:Repeat step 3 to 5 while the total number of nodes in the queus is greater then 1.
Step 3: Remave two nodes that have the lowest weight { or hight priority) i
Step 4: Create a new internal node by menging these two nodes as chelidren and with weight equal 1,
sum of the rwo node's weight.
SrepS:Addlheml)-mmeﬁmd:wmem.

The Hauffman algorithm can be implemented using priority queue in which all the nodes are placed in such,
away that the node with the lowest weight is given heighesy priority
Example: Create 3 Huffman tree with the following nodes aranged in priority Queue,

Gl [s]a]a]=]%]
JEILIEIRY

H
HONNCRES
El@/‘\@
IRONON

dh gl

HiH

L
%
23

o
=
"
¢}

14

Chapter 4 Tree Structure ® 91

92 <« Data Structure (Using C/C+s

4.9 BTree

B tree is a specialized m-way tree developed by Rudolf Bayer and Ed McCreight in 1970 , widely used for
disk access. B tree of order m can have & maximum of m-1 keys and m pointers to its sub-trees. A b tree may
contain a large number of key values and pointers to sub-trees, storing a large number of keys in a single
mm&nmﬁmmm@mlunmdMsm insertion, deletion aperations to be
performed in bogn-i-l.hmi:ammiaadrim:.Bmufordqm[hminnmmbﬁo{:hﬂdren:hatmhmde
can have) is a tree with all its properties of an M-way search tree, hmmhhnmemllwﬂgprapmw&-

1. Ewrynodeh:beBmhnntmtmuhnm]m:hi]dren_

2. Every node in the b tree except meroo'mdsmmlmrmdehuulm(minimm)maimm.
This condition belps to keep the tree bushy so that the path from the root node to the leaf is very
short, even in a tree that stores of a lot of data.

3 The.wmdztusaleasrm:hilﬁ-wifiismamimlﬂﬂr}m.

4. All the leaf nodes are af the same level.

Alljnm!mdninmeBmmmennmbuurchilﬁm.mm_hi,m that
nmnnd:hasﬂnmenmbanf:hil&mMmmhmmhnmhm,hum.m: m
children. As 2 B wree of order 4 is given as follow:-

15

—_ T Chapter & TreeStructure W 93

E OE30Km0

Figure 8.26 @iree

Operations like searching, insertion, deletion of an element from a B tree can be done similar to that in
Binary search tree. Running time of the search operation depends upon the height of the tree, the algorithm
1o search an element in a B tree takes O(log n) time to execute,

Inserting a New Element in a B tree

1. Search a B iree to find the leaf node where the new key value should be inserted.
2. Ifthe leafnode is not null, that is, it contain less than m-1 key values, then insert the new element in
the node keeping the node’s elements ordered.
3. Ifthe leafnode is full, that is, the leaf node already contains m-1 key values, then E
{(a) Insert the new value in arder into the existing set of keys,
(b) Split the node at its median into two nodes (note that the split nodes are half full), and
(c) Push the median element up 1o its parent's node .If parent’s node is already full, then split the
parent node by following same steps.

Example: Inserting a new element in B tree.
Look at the B tree of order 5 diven below and insert 8,9.

Figure 4.27 Insert 8,9 in B tree

94 4 patastucture (UsingCfCrs)

Deleting an Element from a B tree
Like insertion, deletion is alse done from the leaf nodes. Th
leaf node has to be deleted, In the second case an intemal pode has (o be
involved in deleting a leaf node, i
I, Locate the leafl n which has o be deleted.
2. If the leaf node :.:'}'EMPL more than the minimum number of key values (more than m/2 elemenis)
then defete the value. 2 :
3. Else if the leaf node does not contain m/2 elements, then fill the node by taking an element eithes
from the lefl or from the right siblings. . s
@) I the lefl sibling has :ahm rhanymjnimum number of key values, push its largest key into ji'y
pareni’s node and pull down the intervening element from the parent node to the leaf node
where the key is deleted, i
(b Else, il the right siblings has more than the minimum number of key values , push its smalles
key into its parent nesde wnd pull down the intervening element from the parent node to the lear
node where the key is deleted.
4. Else. if both the lefty and right siblings contain only the minimum number of elements , then create
v anew leaf node by (ensuring that the number of elements does not exceed the maximum number of
elements a node can have, that is, m). If pulling the intervening element from the parent node leaves
it with less ihan the minimum number of keys in the node, then propagate the process upwards,
thereby rediscing the height of the B tree,
To delete an internal nodes, pramote the successor or predecessor of the key 1o be deleted 10 occupy the
position of the deleted key. This predecessor or successor will always be in the leaf node. So the processing
will be dodic as it a value from the leaf node has been deleted.

ere arc pwo cases of deletion. In the first case g
deleted. Let us first see the step,

Example: Deleting an element from I8 trec.
Consider the following B tree of erder 5 and delete values 93,200 and 180,

Chapter 4 TreeStructure # 95

DUmoPz0

TEHaE G

Figure 4.28 Dalete 93, 201, 93 from B tree

—

410 B+Tree

An efficient insertion, retrieval, and removal of records, ean be done by using B+ tree (a variant of a B tree).
B+ wree stores sorled data, cach of which is identified by a key. While B tree stores both keys and data records
at interior nodes, a B+ tree, in contrast , stores all the records at the leaf level of the tree; only keys are stored
in their interior nodes.

The leaf nodes of a B+ tree are ofien linked to another in a linked list. This has added advantage of
making the queries simpler and more efficient.

B+ tree are used o store large amount of data that cannot be stored in the main memory . With B+ tree,
the secondary storage(magnetic disk) is used 1o store the leaf nodes of trees and internal nodes of trees are
stored in the main memeory. :

B+ trees store data only in the leaf nodes. All other nodes(internal nodes) are called index nodes or
i-nedes and store index values. This allow us to traverse the tree from the root down 1o the leaf node that
stores the desired data item.Fig. shows a B+ tree of order 3,

Insertion a New Element in a B+ tree

A new element is simply added in the leaf node if there is space for it. But if a data node in the tree where
insertion has to be done is full, then that node is split into two nodes. This calls for adding a new index value
in the parent index node so that future queries can arbitrate between the two new nodes.

However , adding the new index valuz in the parent node may cause it,fumn to spilt - In fact, all the nodes
on the path from a leaf to the root may be spilt when a new value is added to a leaf node. If the root node
splits, & new leaf node is created and the tree grows by one level,

[[se]elss]e] [e]7z]e]7s]s] [e[e0]e[s0tfe] [[iiP[nals] [[isiefraofs] [+[25]s]
Step 3: Delete 180

16

Example: [nsert a new element in B+ iree.
Consider the B+ tree of order 4 given and insert 33 in it.

[=1e]

[=]1sl=]

[=fa[eTe]eTo]=]

L= 52 » o] = Jaa] =]

9% <«

{_DataSuwucture (UsingCftes) — —————

Figure .29 Inserting node 33 in the Bs tree

Deleting an Element from a B+ tree

As in B tree, deletion is always done from a leaf node. If deleting a data element leaves that node empty, then
the neighbouring nodes are examined and merged with the underfall node.

This process calls for the deletion of an index value from tthe parent index node which, in tum, may cause
it to become empty. Similar to the insertion process, deletion may cause a merge-delete wave to run from a
leaf node all the way up to root. This leads to shrinking of the tree by one level.

Many database system are i pl d using B+ tree structure because of its simplicity. Since all the
data appear in the leaf nodes and are ordered | the tree is always balanced and makes searching for data
efficient. A B+ tree can be thought as a multi-level index in which the leaves make up a dense index and the
non-leaf nodes make up a sparse index. N

Example: Deleting a element from B+ tree,
Consider the B+ tree of order 4 given below and delete node 15 from jt.

Step 2: Leaf node underflow so merge with left sibling and remove key 15

17

MIerh Tree Structure B> 97

Figure4.30 Deleting node 15 from the given B+ Iree

Comparisions between B trees and B+ trees
Ly e F T = P b b

T e T e ey :
AR e P
i e

I Search keys are not repeated
2 Data is stored in internal or leal nodes
3 Searching takes more time as data may be found

in a leaf or non-leaf node,
4 Deletion of non-leaf nodes is very complicated
5 Leaf nodes cannot be stored using linked list

6 The structure and operations are complicated.

1 Stores redundant search kevs

2 Data is stored only in leaf nodes.

3 Searching data is easy as the data can be found
in leaf nodes only.

4 Deletion is very simple because data will be in
the leaf nodes

5 Leafl nodes data are ordered using sequential
linked lists

6 The structure and operations are simple.

ey Short Questions J

Define tree.

What is complete binary tree?
What is full binary tree?
What is extended binary tree?

What do you understand by traversal of tree?

What is AVL tree?

2 A

AB+C*D
10.

What do you understand by Binary search tree?

State the list of operation which can be performed on Binary search ree?

Draw a binary gxmuionmmupmmulh following postfix expression
What is the maximum number of nodes that can be found in a binary tree at level 3.4 and 127

98 <« Data Structure (Using C/C++)

b

(]

tn

Short Questions

Write short notes on
a. Tournament tree b. Expression tree

b. Forests d. General tree i
Convert the prefix expression -/ab*+bcd into infix expression and then draw the corresponding
expression tree.

What are two ways of representating binary trees in memory ? Which one do you prefer and why?
Write a Short note on

a) M-way tree b). B tree
Discuss the run time complexity of Binary search tree.

Long Questions

W B o=

Explain the concept and operations performed on Binary search tree.
Explain AVL tree and how AVL tree is better than a binary search tree.
Create a binary search tree with input given below
98,2,48,12,56,32,4,67,23,87,23,55.46

(a) Insert 21,39,45,54,and 63 into the trees

(b) Delete values 23,56,2, and 45 from the tree

Consider the binary search tree given below

Now do the following operation :

a) Find the result of in-order, pre-order and post-order traversals.

b) Insert 11,22,33,and 44

