UNIT-11

Linked Structure: List representation, Polish notations, opera.tions on l_inked list —get
node and free node operation, implementing the list operation. inserting into an ordered
linked list, deleting, circular linked list, doubly linked list, implementation of stack and

queues using linked list.

UNIT-II
3. Linked Structure 40-70
3.1 Introduction 40
3.2 Advantages of Linked List 41
3.3 Representation of Linked List _ 41
3.4 Memory Allocation and De-allocation for a Linked List 41
3.5 Singly Linked List — 42
3.6 Circular Linked List _ 49
3.7 Doubly Linked List T
3.8 Llinked Representation of Stack 64
3.9 Linked Representation of Queue 68
3.10 Applications of Linked List . ' 69

3.11 Questions . 69

Chapter » 3

Linked List

3.1 Introduction

A List can be defined s an ordered collection of data. An array is a list that can be randomly accessed
using an index. Amays are static data structure and disadvantages of using ammay to store data is that,
arrays can not be extended and reduced to fit the data set. Therefore it is possible that we may allocate
too much or too little space demanding on our speculation of the size of data set. It is possible to resize
the amay when the array is full, But the operation requires, claiming new memory for the array and
copying elements from the old array to the new array and destroying the old array. These are all expensive
. operations based on the size of array. Array are also expensive to maintain to new insertion and deletions
~from the array .
Another data structure called LINKED LIST that add, some of the limi
to use an amay or linked list to store data is depend on the type of application.
Alinked list is linear daa structure which is collection of objects linked together by references from
other olject, tion, ca odes. Basic linked list or-singly linked
list consists of one or more nodes where cach node contain one or more data fields and reference to nexi
nodes. Last node contain & null reference which indicate end of list.Unlike arrays where memory is
allocated as continuous block of memory, memory required for each node allecated as per need(memory
allotted dynamically).

EEP—EB—EEHEEI

Figure 3.1

h?‘hc cfmlnodeEl‘Linkad List is called the head, whercas ,last node termed as wil.lfl..isllis emply then head
as the value null.Unlike arrays, nodes cannot accessed by index.One must begin from th verse
the list to access the node of the List, ” sl

of Amays. The decision

3.1.1 Basic Terminologies

Node: Linked List .is a linear collection of data elements. The data elements are called as nodes.
DATA: Each node of linked list contains one dr more data fields scalled DATA,
NEXT: Each node of linked list containis a pointer to the next node, called NEXT,
PREPTR: In case of Doubly Linked list. A more pointer which points the previous node , called PREPTR.
START: Linked List contain a pointer variable START that store the sddress of the first node in the list.

— Chapter 3 LinkedList B &1

NULL: A type of painter which denates the
Circular linked list doesnot haye this,
AVAIL: Free pooliwhich is a linkeg list of all free memary cells), a pointer variable AVAIL which store

5., the address of the first free space Before insert a new node in existing linked list, we first check the
5 ¢, Avail list, either memory for new node is available or not.

end of lists NULL can be used in another way like “nothing”.

3.2 Advantages of Linked List

(1) They are dynamic in nature which allocates the memory when required.
(2) Insertion of new node and deletion of existing node is easily implemented.
(3} Though Linked List, stacks and queue can be easily implemented.

(4) Linked List reduces the access time.

3.3 Representation of Linked List in Memory
There are two wiys 10 represent a linked list in memory
£1) Static representation using Array,
+(2) Dynamic representation using free pool of storage,

Stat_lt Representation

A static representation of single linked list maintain two array: one array for data and other for list.

Two parallel array of equal size are allocated which should be sufficient to store the entire linked list.
Mevertheless this contradicts the idea of linked list (this is non- iguous location of el).In some
programming language like ALGOL,FORTAN.BASIC ¢tc.... such a representation is the only representation
to manage linked lise.

Dynamic Representation

The efficient way of representing a linked list is using of free pool of storage.In this method, there is
A memory bank(a collection of free memory space)and a memory’ manager(a program,in fact).During
the creation of linked list ,when a new node is required , a request placed to memory manager: memory
manager will then search memory bank for the block requested and if found grants a desired block to
the caller. Again, there is also another program called garbage collector, it active whenever node is no
More in use; it return the unused node to memory bank.It is noted that memory bank is also a list of
memory space that is available to programmar, Such memory management is called as dynamic memory

management,

3.6 Memory Allocation and De-allocation for a Linked List

A ist i in dynamic memaory allocation. In other words, free list the free pool of
mmyl;ﬂwmc:mdm:which can be allocated to the new node which has to be insert or created.
A pointer variable AVAIL which store the address ofthe frst free space. AT

De- allocation means deleting & node from the exist linked list. When we delete a pamcu::ﬂm an
®xisting |ist or delete the entire list, the space occupied by it must be given back to poal so memory
Can be | i Mmmmqspmmmhmksdnnebynmm.
The . "Y”'“‘mwfw.“ummullmmhﬁngmd by some program. Then it collects
e el e e e and s hei addess 1 he fre pool, 5 that these cels can be reused by

42 4 DataStructure (Using C/C++)

3.5 Singly Linked List

Singly Linked List is basic linked dats stracture.Nodes in linked list are linked together using the neyy
field,,which store the address of the next node in the next field of previous node iie. each node of the lisy;
refers to its successor and the last node zontain a null reference. Traversal allow only in one way and ther,
is no going back. Looking at Figure 3.1.

3.5.1 Traversing a Linked List

Traversing of a linked list means acces: ing the nodes of the lists in order to perform some processing on
them.Linked list contain a pointer START which stores the address of first node of the list_End of list has &
NULL in the next field of the last node . For traversing the linked list , we have to maintain another pointer
variable PTR which points to the node that is currently being accessed. :
Algorithm for traversing a linked list

Stepl: [INITIALIZE] SET PIR=START

Step2: Repeat Steps 3 and 4 while PTR !=NULL

Step3: Apply Process to PTR->DATA

Stepd: SET PTR=PTR->NEXT[END OF LOOP]

Steps; EXIT

Inthis algorithm, we first initialize PIR with the address of START .s0, now JPTR points to the first node
of the linked list .In Seep2 , a while loop is executed which is repeated till PTR processes the last mode, that
is until it encounters NULL. In Step3. w = apply the process to the current node that is, the node is pointed
by PTR.In Stepd, we move to the nextnede by making the PTR variable point to the node whose address is
stored in the NEXT field.

How you write an algorithm to cour the number of nodes in the linked list . To do this, we will traverse
each and every node of the list and while traversing every individual node, we will increment the couter by

3.5.2 Searching for aValueina Linked List

Searching a linked !is: means to find a perticular element in the linked list. We will check the DATA field of
each node that the given value is present 'Ilﬂ:eDA‘l’Aﬁeldurnu.l!‘ilM the algorithm retum the address
of the node that comtains the value,
Algorithm to search in a linked list

Stepl: [INITIALIZE] SET *TR=START

Step?: Rapeat Step3 while FTRI!=NULL

Stopd: rm»m-mnmm-mm ETR=PTRONENT [FND
OF IF] [END OF 1G0P)

Stepd: SET POS=NULL

Step5: EXIT

In siepl, we initialize a pointer varitble PTR with START that contains the address of the first node

-In step2, a while loop is executed which will compare every node’ DATA with VAL for which the search is

being made.If the search is successful, i.e VAL has been found , then the address of trhat node is store in POS

and the control jumps to the last statement of teh algorithm, If search remains unsuccessful, POS is set 1o
NULLwhich indicates the Val is not present in the linked Jist.

A e . Ghapter 3 linkedlist ® 43

3.5.3 Insertinga New Node jn 5 Linked List
Anew niode can be inserted in existing linked fist in four wa s

(1) The new node s ?mcrled a1 the beginning nl'linlcbdyl‘isl.

(2) The new node is insemed ay the end of linked list,

(3) The new node is imrmdbefon.-agiun node,

(4) The new node is inserted afier 4 given node ,

Before going in detail est us first discuss fiew importan term: called OVERFL OW. OVERFLOW is 2
condition that eccurs when AVAIL=NULL or po free memaory cell nsystem.

Inserting a Node at the Begining of a Linked tist

Consider the linked lst shown in fig. Suppose we want t s o new node with data 9 and add it the first node
of list. Then the: following changes will be done.

Allocate memory for the new node and initialise its DATA pan 1o 9,

]

., Add the new node as the first node of the list by making the NEXT part of the new node contain the
address of START

- Now make START to paint to the first node of the lest.

Figure 3.2

Algorithm to insert u new node i the beginning

Stepl: IF AVAIL=HULLWrite"OVERFLOW"GoTO Stes7T|END OF IF)

Step2: SET MEW_HODE=AVAIL

Stepd: SET AVAIL=AVAIL->HEXT

Stepd: SET HEW_HODE ->DATRA=VAL i

Steps: SET MEW_NODE ->NEXT=START

Stepb: SET START=NEW_NODE

StapT: EXIT i X

i i the new node. If the free memory has
In step 1, wo firs check ‘hﬂh-ﬂ lhe:::I:'l:::; m'ieuf,c;‘: ifm memaory cell isa\-nilnblle '.".“." we
exhausted, then OvERFLUn:'dT“s‘:fi“ DATA part with the given VAL and the NEXT part is initialise
'“Dﬂlv gl node-ul'the list , which is stored in START. NU'W.-uinue the new l:lode is added
:\:Iltrl':h'; n:jdr::: oot;tlhh:i::':: it will now be known as the START node, that is, the start pointer variable
st n .

will hold the address of the NEW_NODE . Note the step Zand 3.These steps allocate memory for
T now i 2 .
the new node.

]

44 4 DataStructure (Using ¢/C++)

Inserting a Node at the End in a Linked List
Suppose we want 10 add a new node with data 9 as the last node . Then following changes will be taken ay

follow: '
I e EAIE o DI o, E1E3
Stant .
Allocate memory for the new node and initiallise its DATA part to 9 and NEXT part to NULL

G

Take & pointer variable PTR which points to START.

Take a pointer variable PTR which points to START.
LT =T 3olel 32[=1x]
St PTR

Move PTR so that it poing to the last node of the list.

[T 101 36l =]
Stan FTR
Add the new node of the node pointed by PTR. This is done by storing the address of the new nod= in
the NEXT part of PTR.
=271 el 1o{a] 1>{e]x]
Stan PTR
Figure 3.3

Algorithm {o insert a new node at the End

NODE=AVAIL
=AVAIL-3NEXT Algorithm

Stepl:

Step2:

el » 3 1 Step3:

Stepll: EXIT :::z;:

In step 6, we take pointer variable PTR and initialize it with START .PTR now points to the first node of the Stepé:

ffnked.lisr .In while loop , we traverse through the linked list 1o reach the Jast np:;ie. Onge wenri@:ch the last :t&p;f

node , in step 9 we change the NEXT pointer of the last node to store the address of the new node. Remember s::ﬁgi
that the NEXT field of tha new node contain NULL, which signifies the end of the linked list Stepl0:
Stepll:
Inserting a Node After a Given Node in a Linked List N 8t::12;

Suppese we want to add & new node with data 9 after the node containing data 7. Then fol'owing changes
will be taken as follow: ' |

Take two pointer variable PTR and PREPTR and
PREPTR paint 1o the first node of list.

Chapter 3 Linkedlist W &5

B-
n. n - I
5T .. ﬂﬂ

Allocate memory for the new mode and intialise fts DATA part to 9

o]

intialise them with START so that START, PTR and

Move PTR and PEEPTR unitil the DATA part of PREPTR = value of the node after which insertion has
to be done PREPTR will always point to the node just before PTR.

START PREFTR FTR

START FREFTR $R
NEW_NOOE
DR DR FE R FIR e FIF|
START

Figure 3.4

IF AVAIL=NULLWrite"OVERFLOW
GoTO Stepl2 [END OF IF)
SET NEW_NODE=AVAIL
SET AVATL=AVAIL->HEXT
SET NEW_NODE ->DRTA=VAL
SET PTR=START
SET PREPTR=PTI

Repeat stepd and § wh
SET PREPTR=FTR
SET np,.pm-)u:s:ﬂlmm OF LOOP]
ru:rm—:ns.x'r-nﬂ_mﬂ@

SET NEW_HODE=SHEXT=PTR

s e i with START. PTR is now pofats o the firs node of the

ile PREPTR->DATA!=NUM

I h]z:ps.ukeatﬁlm'm'?& PREPTRwhich will be used to store address of the node preceding
t. Then , we anther 7 & .

46 4 Dpatastructure (Using C/Ce+) -

PTR. Initially,PREPTR is initialized to PTR. S0, now, PTR,PREPTR and START are all pointing to the firsy

niode of the linked list, 5
In while Loop, we traverse through the linked list 1o reach the nocke that has its vahue equal o NUM. We

need to reach this nnde because the new node will be inserted after this node, Omee this node | in step 10 and
11 we change the NEXT pointers in such a way that the new node is inserted before the desined node,

Inserting a Node before a Given node in Linked List
Suppose we want 1o add a new node with data 9 before the node containing data 8 . Then following changes

will be taken as follow:
DR AR FIE TR K

START
Allocate memory for the new node and initialiase its DATA partio 9
Initializse PREPTR and PTR to the START node.

LR 2] F>{s]x]

START
PTR
PERFTR
Move FTR and PREFTR until the DATA part of PTR = value of the node before which insertion has to
be done. PREPTR will always point to the node just before PTR. 2

START PREPFTR PTR

i. 1

OE- AR FRS TR DR CE

START
Figure 3.5
Algorithm to insert a new node before a node that has val NUM
Stepl: IF AVAIL=NULLWrite*OVERFLOW™
GoTO Stepl2[END OF IF)
Step2: SET NEW_NODE=AVAIL
Step3: IAIL=AVATL->HEXT

_NODE ->DATA=VAL
SET FTR=START
SET PREPTR=PTR

Repeat stepf

SET FREPTR=PTR

SET PTR=PTR->NEXT[END OF LOOP)

PREPTR->NEXT=NEW NODE

SET NEW_NODE->NEXT=PTR

EXIT

and 9 while FREFTR->DATA!=NUM

Chapter 3 Linkedlist B &7

take @ pointer PTR and initialice o .«
josie . we take another Pﬂh\lrrml‘l':aéllile‘: :.,T-S-T“RT' PTR is now points to the first node of the linked

3 3 i H i - .

e all pointing (0 the irs node of the inkea iy, - " ¥R 50 PO PTRPREPTR and START
ile Loop, we traverse thy . -

Ia “:;ch this node because ml':llrih‘:he Imku.l list to reach the node that has its value equal to NUM. we
oy the NEXT pointers ; made will be inseted before this node. Once this node , in step 10
..nlwechansc © "“‘“”‘""“’"‘“‘“‘!mhwmﬂcisinmmawmmmmm.
peleting 2 Node from a Linked List

we will discussed how node is deleted from existing Linked Ii N . .

% The first node is deleted. ng Linked list . Again we consider three cascs:

« The last node is deleted,

+ The node after a given node is deleted,

is a condition that occurs when we try 1o delete a node from empty linked list. START=NULL
m'l'ismd‘“““‘“’“mﬁ"‘mmﬁnrmpwtsnmnmuum:umm " ol
data . Whatever the case of deletion , we always change the AVAIL pointer so that it points to the address that
has been recently med.

peleting the first Node from a Linked List

Suppose we want to delete the first (starting node) from the linked list . The following changes will be taken
as follow;

Algorithm to delete the first node

IF START=NULLWrite UNDERFLOW

Stepl:
k GoTo Staps[END.OF IF)

Step2: SET PTR=START

Stepld: SET START=START->NEXT
Stepd: FREE FTR

Steps: EXIT

empty or not, If START=NULL it means UNDERFLOW, and

i i i i i iable PTR
transfir to the EXIT statement, Howeve if there are nodes in linked list , then we use a pointer vari
that s set to point to the first node of the list . For this, we initialize PTR with START that stores the address

of the first node of the list, In step? » START is made to point to the next nede in sequence and finally the
mmpi,:hy“,;m?ﬂmﬂﬁmuﬂnmmmwﬂwtmmwlmwm:s

fieed and returned to the free pool.

Deleting the Last Node from a Linked List _
inked list, then the following changes will be taken as follow:

Suppose we want to delete the last node from the
. AT 30 [R]

START -
PREPTR which initially point to START

In stepl, we check if the linked list is ither

Mpﬂil'll.trv i
ariable PTR and
[T} 713 AR LR FE
START
PREPTR
PTR

48 4 Data Structure (Using (/C++)

Move PTR and PREPTR such that NEXT part of PTR = NULL. PREPTR always points to the node jug
before the node pointed by PTR.

START PREPTR PTR
Set the NEXT pant of PREPTR node o NULL
1] T 3
START
Figure 3.6 o
Algorithm to delete the last node
Stepl: IF START=NULL Write UNDERFLOW
GoTo Stepf-> 1
Stepl: SET PTR=S5TAR
Stepld: Repeat steps 4 and § while PTR=>NEXT!=NULL
Stepd: SET PREFTR=PTR
StepS: SET FTR=PTR->MEXT->[END OF LOOP)]
Steph: SET FEEPTR->NEXT=NULL
StepT: FREE PTR
Stepd: EXIT

hmlmnﬁ:apﬂufmm-ﬂiﬂﬁdmhwm“ﬂtmmmnowpo.intsmﬂ:c
first node of the linked list. In the while loop, we take another pointér variable PREPTR such that it always
pﬁnm-uﬁehﬁm:ﬂtmc“mm&ehmdcndmmdInslmde,w-;mﬂ:eNExT
pointer of the second last node 10 NULL, so that it now become the (new) last node of the linked list.

D“_H““Iﬂﬂ!lmhimlﬁ 3
%hﬂu“hmhmhmmmmﬁus.nmmefollowi.ns

changes will be mken s following:
DR AR AR TR HE
START

Take pointer varisble PTR and PREPTR which initially point to START
U1 0T 30T PG ER
START
PREPTR
PTR
Move PREPTR and PTR such tha

PREPTR points 10 the node contain i
succeding node. ing VAL and PTR points 4o the

START PREFTR PTR

CIr3={7 BRETIRE FE
PREFTR PTR

S

R _
- T Chapter 3 linkedlist B 49
’*“NEXT part of PREPTR 1o the Mg x T part of BTR
1 T (T
STAAT L}_y—l}— U E]
PREPTR | 1R [
[! }-—)|7i_" R
| T LT
START J >!____, H2|x]
Figure 1.
Algorithm to delete the node afier 5 Eiven node
stepl: IF START=NI
GeTe Steplo-
stepl: SET PTR=STAR
Stepd: SET BREPT=pPTR
Stepd: REpeat stepsl and 6 wnyia PREPTI->TATA =NUM
step5: SET PREPTR=PTR
Stepb: SET PTR=FTR->NEXT-»[END OF Loge]
StepT: SET TEMP=PIR
Stepd: SET PREPTR->NENT=ETR->NEXT
Steps; FREE TEMP
Stepl0: EXIT

4 Instep 2, we take a pointer variable PTR and initialize it with START That is, PTR now points to the
first node of the linked list. In the while loop, we take ancther pointer vanable PREPTR such that it always
points to-one node before the PTR.Once we reach the node containing VAL and the node succeeding it, we set
the next pointer of the node containing VAL to the address contained in next field of the node succeeding it.

3.6 Circular Linked List

Alittle bit modification in linked list, the last node contains a pointer to the first node of the list. While
traversing a circular linked list, we begin at any node and traverse the list in any direction 'Fn:rwzrd or
Juntil we reach the same node where we started. Thus, a circular linked list has no begining and

(4] (sl |
 emndlitiion

Figure 3.8 } ;
complexity of iteration.Note that there is no NULL value in

mo ending .

h - - .
The main drawback of circular linked list is It
the NEXT part of any nodes of list

Mnamuuwnumurmm
ABew node can be inserted in existing linked it
€1) The new node is inserted at the .
(2) 'The new node is inserted a the €0

in wo ways: .
g of the circular linked list.

o fthe circular linked lis.

50 -4 DataStructure (Using C/C++) i,

Inserting a Node at beginning of a Circular Linked List
Consider the linked list showin figure. Suppose we want to add 4 new node with data 9 as the first nodg of

the list
711 T 3->{s] |
START

Allocate memory for the new node and initialize its DATA paut to 9.

GO

Take a pointer variable PTR that points to the START node of the list

DR HEs OE OE [N
START| PTR

Mave PTR so that it now points to the list node of the list,

BEy R, DR O [N
START PTR

Add the new node in between PTR and START

ORI R DR O Ol
START FTR

Make START point to the new node.
(o] =00 +=[71 3

START

3] 214l 26l |

Figure 3.9
Algorithm to insert 2 new node at the begining
Stepl: IF AVAIL=NULL Write “OVERFLOW~
Go To Stepll(END OF IF)

StepZ: SET MEW_NODE =AVAIL

Stepd: SET AVAIL=AVAIL->HEXT

Stepd: SET NEW_NODE->DATA =VAL

Steps: SET PTR =START

Steph: Repeat Step7 while PTR=->NEXT!=START
StepT: =ETR=>NEXT [END OF IF)

sid

lnm!.whmmmmhavdmfwhmm If exhausted,

heck . Ifthe free memory then
OVERFL_OWmmnge is printed . Otherwise, if free memory cell is available ﬂmwnllmh:xufm‘ﬂﬂ”
ntode. Set its DATA part with the given VAL and the ialized wil

Tist, whid‘risﬂuadinSfART.NmshtﬂnﬂewnﬂdrkaﬂMuﬂtcﬁmmﬂeu{hIh, it will now be known
now hold the address of the NEW_NODE.

- T Chapter3 Linkedist B 51
While insenting a node in a cireylar |y

jist. Because the Tast node containg 3 Skt

it points to the new node which will be pow

We have use a while loop, to traverse the last node of the
1o START, its NEXT field is updated so that after insertion
known as a START.

|nserting a Node at the End of 3 Circular Linked vist

Consider the linked list shown in fig. Supposc
Jist. The following changes will be done,

IR IR AR O RS ON
START

Allocate memary for the new node and initialise its DATA part to &,

1l

Take a pointer variable PTR which will initially point to START.

R OE FRE MRS AR 0N
START [PTR

Move PTR so that it now points to the last node of the list,

DR R BE - OE AR O
START

Add the new node after the node pointed by PTR.
EIE R FE DR R ORIl

START PTR

we want 1o add a new node with data 9 as the last node of the

. Figure 3.10
Algorithm to insert a new node at the end

Stepl: IF AVAIL=NUL Write “OVERFLOW"
Go To step 10(EWD OF IF]

Stepi: SET NEW_NODE =AVAIL

Stepd: - SET AVAIL=AVAIL-DHEXT

Stepd: SET WEW_NODE ->DATA=VAL

Steps: SET MEW MODE->NEKT=START

Step6: SET PTR=START

Step?: Repeat Stepd while PTR->MEXT ! =START

Stepd: SET PTR=PTR->NEXT [END OF LOOP)

Step9: SET PTR->NEXT=NEW_NODE

Stepl0: EXIT .
In step g, nter varioble PTR and initialise it with START. That is, PTR now points to the first
m:f“:rﬁ ;::dlnmwhmmwcmdmﬂ:ﬂnlnﬁedlmwm the last node . Once we
reach the Inst node u;mpgwcmFm,NExrpipur?rmumdempsm the address of the new
node , Remember that the NEXT field of the new node contains the address of the first node which is denoted

by START,

'

52 A Data Structure (Using C/Cs+)

Deleting a Node from a Circular Linked List

A node can be deleted or removed from existing linked list in two Ways:
(1) The first node is deleted.
(2) The last node is deleted.

Deleting the First Node from a circular Linked List

Consider the circular linked list shown in fig . when we want to delete 2 node from the beginning of the Jj;
then the following changes will be done.

=T G -E -6
START
Take avariavle PTR and make it point to the START node of the list

E;]E]]E]

Move PTR further so that it now points 1o the last node of the list
(L 1 e -z {e]]

START

‘I‘heNEK‘l‘man‘k'nmndem]:oimmﬂrmndwdeofﬂnﬁs:mdlbemmnryufunﬁmmdeis
freed. The second node becomes the first node of the last.

7] {3l e[{2 Fof6]]
A e —

Figurer3.11 Deleting the first node from a circular linked list
Algorithm to delete the first node

Stepl: IF START=NULL Write “Underflow”
GoTe Step8[END OF IF)

Step2: SET PTR=START

Stepd: Repeat Stepd while FTR->NEXT ! =START
Stepd: SET PTR=PTR->NEXT[END OF LOOP]

StepS: SET PTR->NEXT=START=->NEXT

Step6: FREE START

StepT: SET START=PTR->NEXT
Steps: EXIT

nodcsinﬂnl-’s:andmemmulismmwduhammnrm
However, if:hmmnnduinﬂtelhkedIiﬂ.rhenwurpohsmm-vhi:hwillbeumdw
mmwmelismur&nmymmmm.mms,uwummuummmm
mﬂnmmdnodeofﬂ:ecimufnrlinkedh’st,lnﬂgpﬁ.mmmﬁh&ﬁmmhﬁuﬁlﬂhﬁ
in step 7, the second node now becomes the first node of the list and its address s stored in the variable START.

In step 1, we check if the linked list exists or not. If START=NULL , then it signifies that there are no
algorithm.

Deleting the Last Node from a Circular Linked List
Consider the circular linked list shown in fig . Suppose we want to delete the last node from the linked list
then the following changes will be done

i hmﬁhm:@inmmd Fors

- Chapter 5 linkedlist B §5

,_.EE,. Lo T ——
3 rmal 3]
STamT # —_

.)
two pointer PREFTR and prg), ieh will initially point 1o START
EHE 3 4| 121
START'
PREPTR
TR

Move PTR 5o that it points to the last node of the fisy PREPTR will ahways point to the node preceding PTR.

ko piite.t
LR
12 sl |

START PTR PTR|

Figure3.12 Deleting the Last node from a circular linked list

| Algorithm to delete the Last Node

Stepl:

Step2:
Step3:
Stepd:
StepS:
Stepé:
Step7:
Stepa:
In 5tp 2 we take a pointer varisble PTR and imicalize it with START. That is. PTR now points to the first
e of the linked i In the whil kop, we take smother pomter varable PREPTR sach that PREPTR
wmmeﬁ-mmemﬂﬂthﬂmwﬁdﬁlwmﬂmmm
{m)hg:mntmm@_mmormwmwm:::dtMWwﬁmm
: Ci i i i alion i operaling sysiem mmmml .
HOTE.C““I‘"MImw;mwmwddRMmewnmEmf"“mm_ s we
h"llklud,.—j,h;;;::'d::i’m'}mmubsmpkdcﬂuh'liﬁﬁlhzsudwmmum

z is circular linked list either in forward or backward direction helps
Squence of the web pages. Traversing this srd butions. Actually this done using either the circular stack

wﬁ!l.‘ilmlim‘
“lmmcmlrlw
the end of the list.

¥ include <stdic.h>
¥ include <conio.h>
¥ include<malloc.b”
Btruce node;

list, Perform insertion and deletion at the beginning and

54 <« Data Structure (Using C/C++)

{

Chapter 3 Linkedlist B 55

start=delete sfray Istare)

int data;s break:
astruct node *AGKLi case 8 :
1i | atart= dﬁlete_li_gt[a-_n:”;
struct node *start=NULL: PrAREL(™\n CIRCULAR LINKED LisT tepprece s
struct node *create cll(struct node); braoak: - b
struct node *display{struct node *);
struct node *insert_beg(struct node *); }
struct node *insert_end(struct node *); i
struct nede *delete_beg(struct nede *); | jwhile (option!=9)
struct node *delete end(struct node *); getchil;
struct nede *delete_after(struct nede *); | raturn 0;
struct nede **delete_list(struct node *}:
int main()}

atruct node ‘ereate cll(struct node *stark)

i i

int ocption;
clrscr();: .
do
{
Printf{™\n\n ******MATN MEND*ss=s=),
printf{®\n 1: Create a list™);

printf(* \n Enter -1 in end*];
printf(™ \n Enter the data~);
scanf (" %d*, &num);
while{numl=1}

i

printf(*\n 2: Display the list”); new n: -] :
printf("\n 3 : Add a node at the beginning "); n::_nzg.:--m::::::;:m?m PRI ATR pely
printf(*\n 4 : Add & node at the end *); if (start==NULL)
printf("\n 5 : Delete a node from the beginning *); {
printf(*\n & : Delete a node from the beginning *); - = :
Printf(*\n 7 : Delete a node after a giv:n nod: 4 T] :::;::::u):::: i
printf(*\n 8 : Dalete the entire list ~); 3 = !
prinef(*\n 9 : EXIT =); L
printf(*\n\n Enter your option : *); e
scanf (™id”, goption); : I
switch(option) e
{ while (ptr=rnext != startl;
case l: start=create cll(start); PO PErroaat]
Printf(*\n CIRCULAR LINKED LIST"); e g
Break; new_node-> next = start;
case 2: 2 I A
startedisplay(stact); SOEET A Euch® khe SECSRLE
reak; scanf ("“%d”, &num);
case 3 :
S“I‘E'fns!r‘:_heq(aur:) return start;
break; ; i
case 4 Struet node *display(struct node "start)
:urt-in:ert_m (start); !
break; Struct node *ptri "
case 5 : : Ptr=start;
:‘Hrt-deiete_hegfstut] : while (ptr-> next!= start}
break; |
case 6 : printf(*\t td, ptr ->datal;
Starte cdelete end(start); Ptr= ptr-»next:
break;
case 7 ; Printf(* \t %d~, ptr-> datali

return start;

10

56 4 DataStructure (Using C/C++)

]
struct node *insert_beg(struct node *start)
1
struct nede *new_node, “ptr:
int num; e
printf(™\n Enter the data :"};
scanf (™ ¥d¥, snu=);

new_node = [struct nedé *Imalloc(sizect(struct nodell’

new_node-> data=num:
ptre= start:
while(ptr->next != start)
Ptr = ptr-rnext;
ptr->next=new_node;
new_node->next=starts
STArt=new node;
return start;
I
struct node *insert_end (struct node *start)
|
struct node "ptr, *new_node;
int mum;
printf(™ \n Enter the data : ™); r
scanf (™ %d”, &oum);
new_node=(struct node *)malloc(sizect (struct node));
new_node->datasnum:
ptr=start:
while [ptr->next '= start)
Ptr=ptr->next;
nev_nodé-> nextestart:
return start;
] .
‘:tzuc: node "delete beg (struct node *start)
atruct node *prr;
Ptemstart;
while(prr-snext != searr)
Prtr=ptr-snaxt;
free(start);
Start= ptr->next;
return stare;
F
‘.:!tILI.\’.‘E node *delete_end (struct node *start)
struct nede *ptr, *preptr;
ptr=start;
while (ptr=>naxt !m= start)
{
Preptr=ptr;
PLr=ptr->next;
}
Preprr=>next=ptr=>next;
freeiptr);

1

Chapter 3 Linkedlist W 57

return start;

1
struct node “delete_afrer (g¢
{
struct node *prg, *preprr;
int val;
printf(™ \n Enter the walue ar
scanf (™ wd”, sval);
ptrestart;
preptr=ptr;
while(preptr->data != wal)
i
preptr=ptr;
prE=pLr=>next;
}
preptr->naxt=ptr->next;
if(ptr = = start)
Start=preptr-»next;
freeiptrl;
return start:
1
struct node *delete_list (struct node *start)
{
struct node *ptr;
int num;
ptr=start;
while (ptr=»>next != start)
start=delete end(stare);
free(ptrl:
return start;

TUCt node tarars

ter which the node has to be deloted : “);

3.7 Doubly Linked List
Acomplex type of Linked list which contain a pointer tothe next as wellas the previous node in sequence,called
Double Linked List or two-way linked list. Therefore it consists of parts- data , next node pointer, previous
node pointer as shown in fig.

Figure 3.13 Doubly linked list
{ can be given as,Struct node
D - struct node *next;};
{struct node *prev; f;mf:::'de and Next pointer of last node contain null. The Prev pointer holds
Aw oy politor oe 11 through which we traverse the list in backward direction So it is clear

In C, the structure of double linked lis

the address of preceding node & % 5 ¢

i i : re spaceas per node than single linked list and more ¢xpensive
:‘l:t': ::::I: :L:';':n';’;z:'fz;:m of using doubly linked list is that it makes searching twice as
efficient. ’

S8 4 DpataStructure (Using C/C++)

Inserting a New node in Doubly Linked List

I this section we discussed how new node is inserting in an existing doubly linked list.We will take four

cases and see how insertion take place.

Inserting a Node in Beginining of Doubly Linked List

START

Allacate memory for the new node and initialice its DATA part 1o 9 and PREV field to NULL.
I8l]
Add new node before the START node. Now the new node becomes the first node of the list.
XIET B2 17T 32 171 Je2 T3 Je2{ T6T =2 [2IX]

Figure 3.14 Inserting a new node of the begining of Doubly linked list
Algorithm to insert 3 new node at the begining

Stepl: IF AVAIL = NULL Write OVERFLOW
Go to Step S[END OF IF]

Step 2: SET MEW_NODE=AVAIL

Step’3 SET AVAIL=AVAIL->HEXT

Step 4: SET NEW_NODE=DATR=VAL

Step 5: SET MEW_KODE~->FREV=HULL

Step €1 SET NEW_NOOE-SNENT=START

Step 7: SET STRRT->PREV=NEW_KODE

Step 8: SET START-NEW NODE

Step 9: EXIT

In step], we check whether the

of the first node of the list, which i
the list, it will be known as the §

Inserting a Node at the End of a Doubly Linked List
Then the following changes will be done in the linked list:
START

Allocate memory for the new node and initialise its DATA part 9 and jis NEXT field to NULL.

Take a pointer variable PTR and make it Point 10 the first node of the Jisy

START, PTR
Muwmmlharitpomlsmmemlmdeod'ﬂuliu Add
3 liwnewmdullcruunndawlmhym

12

mknﬁh&hwmﬂeum,lfﬁn free node is exhausted,
Otherwise if free node is available, then allocate the memory
space to new node. Set the DATA pant wi!mﬂnxjm\'ﬂLpdﬂumnmlsiniuileimmem
Ts?mﬂan:nﬂw.smm_emmuwnuwﬁmmdwf
ool b node, that is, the START pointer variable now holds the address of

Chapter 3 Linkedlist B 59

3'11'".-
Stepl:
Stepl:
Stap3:
srepdt T HEW _HODE~>Da L
steps: SET NEW_NODE =>NENT =NULL
Stepb: SET PTR=START
SrapT: Repeat Step B while PTR-3MEXT !=NULL
Stepd: SET PTR=PTR->*NEXT[END OF LOOF)
Stepd: SET W%-PNEKT-.‘IF.H_'

SteplO: SET BEW_NODE->PREV=FTR
Stepll: EXIT

In step 6, we take a pointer variable PTR and initialize it with START. In the while loop, we traverse through
the linked list to reach the last node . Once we reach the last node in step 9 . we change the NEXT pointer of
the last node to store the address of the new node . Remember that the NEXT field of the new node contains
MNULL which signifies the end of the linked list . The PREV field of the NEW_NODE will be set so that it
points to the node pointed by PTR(now the second last nede of the list).

Inserting a Node After a Given Node in a doubly Linked List

Consider the doubly linked list in fig. Suppose we want to add a new node with value 9 after the node
containing 3. Following changes will be happen:

Allocate memory for the new node and intialise its DATA part to 9

Nttwimrvuhhlemmdmhpomlolheﬁmmdcofﬂ:: list,
FE[e R b 12 Tal 12 [1ix]
START, PTR .
Move PTR further until the data part of PTR = value after which the node has to be inserted,

START PR

60 0 Data Structure [Using {/C++)

Algorithm to insert a new node after a given node

Stepl: IF AVAIL=NULL Write"OVERFL
Go To Stepl? [END OF IF)

Step2: SET NEW_NODE=AVAIL

Stepld: SET AVAIL=AVAIL->NEXT

Stepd: SET WEW_NODE->DATA=VAL

Sreph: SET PTR=START

Steph: Repeat stepd while PTR->DATA!=NUM
StepT: SET FTR=FTR=->NEXT[END OF IF]

Stepl: SET NEW_XNODE->NEXT->NEXT=PTR->NEXT
Step: SET MEW_NODE->FREV=PTR

tapll: SET PTR=->NEXT=NEW WODE
Stepll: SET PTR->NEXT->PREV=NEW _NODE
Stepli: EXIT

Inserting a Node before a Given Node

START
Allocate memory for the new niode and initialize its DTA part to 6.

Take 2 pointer variable PTR and make it point to the first node of the list.

IEEI-IEI'-II 2L o] [[2[x]

START, PTR .

Mmmm”mnmmmbmmmﬁ.m to the value before which the

node has to be inserted.

Aﬁﬁemmth:mewmmhmmhgiL
EEI-‘II\

Figure 3.17
Stepl: IF AVAIL-NULL Writs"olERpigye

GoTO Stepl? (END oF rs)
Step2: SET NEW_NODE=AVAIL
Step3: SET AVAIL=AVAIL-NEXT
Stepd: SET NEW_NODE ->DATA=VAL
Step5;: SET PTR=STRRT o
Stepé; Repeat Atep? while Pra-m.n.mg-mml

13

Chapter 3 Linkedlist B 61

stapT:
stepd:
step9: =ETR=2PREY
stepl0: s NODE

stepll: SET FTR->PREV- NEXT-nEw nong
Stepl2: EXIT it

peleting a Node from a Doubly Linkeg List

node an be deleted or removed from existing |: st i :
A S ng linked list in four ways:
(2) The last node is deleted.
(3) The node after a given node is deleted .
(4) The node before a given node is deleted.

peleting the First Node from a Doubly Linked List

Consider the doubly linked list shown in fig. When we want to delete a node from the beginning of the lis
then the following changes will be done. .

Free the memory occupied by the fist node of the list and make the second node of the list at the

START node
OIN=NER=A0N=E0

4 Figure 3.18
Algorithm to delete the first node of Doubly Linked List

Stepl: IF AVAIL=NULL Write“UNDERFLOW™
Go To Step6(END OF IF)

Step2: SET PTR=START

Stepi; SET START=STRART->NEXT
Stepd: SET START->PREV=NULL
Step5: FREE PTR

Stapé: EXIT

In step 1 we check if the linked list exists or not. 1f START=NULL then it signifies that there are no
Rodes in the list and the control is transferred to the-last statement of the algorithm. However if there are
Bodes in linked list , then we use a temporary pointer variable PTR that is set to point to the first node of
the list . For this, we initialize PTr with START that stores the address of the first node of the list. In step 3,
START is mage to point to the next node in sequence and finally the memory occupied by PTr (initially the

first node of the list) is freed and retumed to free pool.

Deleting the Last Node from a Doubly Linked List

Consider the doubly Linked List shown in fig. Suppose we want 1o delete the last node from given doubly
list, then the following changes will be done.

62« Data Structure (Using C/C++)

Take a pointer variable PTR that point to the just node of list.

~EEE=R08=~N00~=NEE

START. PTR

Move PTR. so that it now point to the last node of the list.

Free the space occupied by the node pointed by PTR and store NULL in NEXT field of its preceding node.
BEN~EER=E0N=E060

START
Figure 3.19

Algorithm to Delete the Last Node

Stepl: IF START=NULL Write“UNDERFLOW®

GeTO Step7[ENMD OF IF)

StepZ: SET PTR=START

Step3: Repeat Stepd while PTR->NEXT!=NULL

Stepd: SET PTR=PTR->NEXT|END OF IF).

StepS: SET FTR->PREV->NEXT=NOLL

Steps: FREE PTR

Step7: EXIT .

Jnslqﬂ.ﬂuknpohﬁwﬂﬂemm‘niﬁdiuitwilh START. That is PTR now points to the
first node of the linked list . mnihmummm:mmmmmmmp:w.w
::ﬂmhibemﬂe.wcnaknm the second lagst node by taking its address from the PREV field of the

node. Todehumelumde.wesimplyhnmsulheNEXTﬁeldnﬁhnemdhnnodewNULL
s that it now becomes the (new) last node of the linked list. The memory of the previous last node is freed

ﬂﬂeﬁnyhlﬂd&%aﬂmmm Doubly Linked List

ConsidermedntuLinkad'U}uhminﬁ;&mpmewew delete succeeds
’ ant to
which contain data value 4 Then the folloeing changes will be done, e Gias

EEI-IEI-IEIII-IEI!-IBIH-IEIH

Mavammﬁmhersolhn:i:sdmpmisquimu,,“manawhﬂmemaumh*m

14

"""_-—__'_'—"‘—‘-—-—-—-____________m_ame_r! Linked List P 63

DR BON~ROR=N0E
FTR
Delete the node succeding pTg
HON~NEN [BRI R 519
Figure 3.20
Algorithm to delete a node afier 5 given node
Stepl: IF START=NULL Write “UNDERFLOW™
GoTo Step $(END oF IF)
Stepl: SET PTR=START
Step3: Repeat Stepd while PTR=>DATA! =NUM
Stepd: SET P'IF.-P‘TR—bN’EXT[ZN:) OF IF)
StepS: SET TEMP=PTR->NEXT
Stapé: SET PTR->NEXT=TEMB->NEXT
StepT: SET TEMP->NEXT->PREV=PTR
Step8: FREE TEMP »

Stepd: EXIT
In step 2, we take a pointer variable PTR and initialize it with START. That is PTR now points to the first
node of the linked list . The while loop.traverses through the linked list to reach the desired node. Once we
reach the node containing VAL, the node succeeding it can be easily accessed by using the address storeed
in its NEXT field .The NEXT field of the given node is set to contain the contents in the NEXT field of
the succeeding node .Lastly the memory of the node succeeding the given node is freed and returned to

liuﬁ'cepwl.
Deleting the Node Before a Given Node in a doubly Linked List

Consider the doubly linked list shown in fig. Suppose we want 1o delete the node preceding the node with the
value 7. Then the following changes will be done as follow:

64 A Data Structure (Using C/C++)

Figure 3.21

Algorithm to delete a node before s given node
IF START=NULL Write “UMDERFLOW"

Stapl :
Go Te Step $[END OF IF]
. Stepl: SET PTR=START

Stepl: Repeat stepd while PTR=»>DATA

Stepd: SET FTR=FTR=>NEXT[ERD OF LOOP)

Steps: EMP=FPTR->PREV

Stepb: TEMP->PREV->NEXT=PTR

StepT: T PTR->FREVeTEMP->PREV

Steph: FREE TEMP

Stepd: EXIT |
|

In step 2, we take a pointer variable PTR and initialize it with START. That is PTR now points to the firsg
node of the linked list . The while koop,traverses through the linked list to reach the desired node. Once we reach
the node containing VAL, the PREV ficld of PTR is set to contain the address of the node preceding the node
which comes before FTR . The memory of the node preceding PTR is freed and returned to the free poal,

NOTE: We see that we can insert or delete a node in a constant number of operations given only that
node’s address. This is not possible in Singly Linked List which requires the previous node *s address also o

perform the same operation.

3.8 Llinked Representation of Stack

%hntmm-ylmmmhwfmtThisu:ﬂniw:ufmingsmkismybulhavudmwhackislllat |
ﬁm?thﬁwwmwﬁmsRhmhmisu\'ﬁ')rmuiloneoriﬁmuimumsiuis i
Iuwwn_m Hw.ﬂlm(he_lmlymhncmuim of the stack givesan efficient implementation. But what if the
myrﬁemhmm:mmm;m“mMGmmﬁw,i.e.lirﬂ:adummiw-
Slorige reg| of linked rep ion of the stack with n el i i i
ok Vout 1 01 with n elements is O (n), time requirement

As linked list in linked stack, every node has tWo parts-one that stores data and another that stores the |

address of the next node, ”'PSTAR'TPUirlleruflheﬁnkedsmkisuseduT() insertions and deleti

; F. All inserti d deletions
arc done at the node pointed by TORIf TOP=NULL it indi i
The Link i ILL , then it indicates that the stack is empty.

1 2]
8. | P {a] 1-{s[x]

Flgure 3,22
Operations on A Linked Stack
Similar to stack , linked stack supports all stack operations, that is, push and pop
Push Operation

The push operation is used to i i 3
Lt il insert an element into the stack The new element is inserted at the opmest

15

Chapter 3 Linkedlist B &5
v DA T35

Figure 3,23

" | 1
To s:m :HV:I:T;:EL;*;: Tr;: check if TOP=NULL If his is the case then we allocate memory for a new
, store Part and NULL in its next part. Now this few node becomes TOP of stack.

o TR
.

Figure 3.25
Algorithm to insert an element in a linked stack

Stepl Allocate memory for the naw n it =W
o SET NEW HODE -3DRTR=ip nede and name it as WEW_MODE
Srepld IF TOP=HULL
SET NEW_NODE ->MEXT =TOP
SET TOP=NEW NODE
ELSE N
SET NEW_NODE ->MEXT =TOP
SET TOP=NEW_NODE
[ERD OF IF)
Stapd END
Pop Operation

The pop aperation is used to delete the topmost element from a stack Befor deleting the value , we must first
check if TOP=NLILL, becuse if this is the case , then its means that hie stack is empty and no more deletions
can be done, If an attempt is made to delete a value from a stack that is already empty, an UNDERFLOW

message is printed.
[8]_{{2] {3 {4l {5]
TOP

Figure 3.25
In case TOPI=NULL, the we will delete the node poinied by TOP , and make TOP point to the second

tof the linked stack. Thus, updated linked stack as follow

Bl Bl g OB HE
* ToP .
Figure 3.26
Algorithm to detete an clement from a Linked stack

Stepl: IF TOP=NULL ;
PRINT UNDERFLOW™
Goto Step 5

’ (END OF IF]
Step2: gET PTR=TOP
.]

66 4 pataStructure {Using C/C++)

Step3d; SET TOP=TOP->NEXT
Stepd: FREE PTR
Steps: END

Write a program to implement a linked stack

include <stdio.h>
¥ include <conio.h>
§ include<malloc.h>
struct stack

int data;
struct stack *next;

T
struct stack *top=NULL:
struct stack *push(struct stack *, imt);
struct stack *display(struct stack *);
struct stack *pop(struct stack *);
int main ()
{
int val, optionj
clrser() s

e

printf(*\ n *e*esqRIN MENUsssssw),
printf(* \n 1. PUSH");
printf(® \n 2. POP");
printf(™ \n 3. Display”);
printf(™ \n 4.. EXIT"):
PEANLL(™ \n Enter your option :*);
scanf (“td”, éoption);
switch (option)
{

Case I: A
PEINCL{™\ n Enter the number to ke pus f
scanf (“%d*, sval); e R
top=pushtop, val);
break;
Case 2:
Lop=pop (top) ;
break;
Case 3:
top=display(top) s
braak;

}

while(option 1=4)
getch();
return 0;

|
| Chapter 3 Linked List
| seruct SEACk ‘Push (seyy., Stack », : kedlist &7

16

[,;:uct stack *ptr;
pte=(Struct stack s mallo (ag.
ptr—?datd*V&]J
{f (top=NULL)

{
ptr-Pnext-NULLI

top=pLE:

1

alse

{ ;
ptr->next=top;
top=ptr;

)

return top;

1
struct stack *display(stryct stack *rop)

struct stack *ptr;
ptr=top;
if ({top==NULL}
Printf (" n STACK IS EMBTY");
else
{
while {ptr!=HULL)
{
printf("\ nid”, ptr-sdata);
Ptreptr->next;

)
}
return top;

:truct stack *pop(struct stack *top)

Struct stack *ptr;
‘Ptr=taop;

if (cop=nNuLL)

Printf(*\ n STACK IS UNDERFLOW*):

else %
{

‘top=top->naxt;

Printf(* \n The value being deleted is
: fres(ptr); :

| Teturn rop;

: %d”, prtr=>data);

68 4 DataStructure (Using C/C++)

3.9 Linked Representation of Queue o

We have already seen how Queue is created using array. Although this lechniquclol’ crea}ing a queng j

but have a drawback of limited size or can say array must to have some fixed size(static "m""“-”“l'e
:?I?::anc space for 40 elements in the queve and it hardly use 20-25 locations, then hulfoftlte space wij|
be wasted. And in case we allocate less memory locations for a qucu:llhm might enld up g‘;u:;ng inl‘gr?nd
large , then a lot of re-allocations will have to be done, thereby creating a lot of overhead a consuming
a lot of time.)) D

If aray size is known in advance then array implementation of the queue gi s an efficien
implementation.But if the amay size cannot be known in advance, the other alternative ie, linkeg
representation is used. . s

The storage requirement of linked representation of a queue with n elements is O(n) and the typical time
requirement fior operations is O(1).

Operations On Linked Queue
Similiar to Queue, Linked queue has two basic operations: Insetion and Deletion.
Insert Operation

Thiuuﬂm:mu'mismedwinsenanckmmtinmaqum.nemetcmuuisldduduslheJas1 element
of the queue.

DR ERSERZ 0N
FRONT

(2] -{e[x]
REAR

Figure 3.27

To insert an element we first check if FRONT=NULL. If the condition holds , then the queue is empty .
So, we allocate memeory for a new node , siore the value in its DATA part and NULL in its NEXT pan.

The New node will then be called both FRONT and REAR. However, if FRONT !=NULL, then we will*

insert the new node at the rear end of the linked queueand name this

new node as REAR. Thus updated
queue as follow

T SR E - ER
FRONT

REAR
Figure 3.28
Algorithm to insert an element in 8 linked queue
Stepl: Allocare memory for the new node and name it as pTR
Step2: SET PTR->DATA=NULL
Step3: IF FRONT =NULL
Stepd: SET FRONT=REAR=PTR)
Steps: SET FRONT ~<NEXT=REAR->NEXT=HULL
ELSE
SET REAR->NEXT=BTR
Steps: SET REAR=PTR
Step7: SET REAR->NEXTNULL

17

e ——— e SR —Chapter 3 Linked List B 69
[END OF 1) -
geepl: END
Imlmm;uazatinn

The delete OpEration is used to dejyye i, elas

. P b that s firsy j ed :
ored in FRONT, 3 mierted in a queue,iethe element whode
this ustlsls':cn ih;nqueue i;re:;:::;:ﬁ" d‘;::”‘_s the value we must check if, FRONT=NULL because if
i} ; : re deletions can be done if the P
from a gueue that is already empyy, 4 underflos b pﬁnn:: I the attempt is made 1o delete 2 value

UL AR
e 3l

REAR
L E-E - 2]x]
FRONT REAR

Figure 3.29
Algorithm to delete an element from 5 linked queue

Stepl: IF FRONT=NULL
Write"UNDERFLOWY
Goto Steps
[END OF IF]
Step2: SET PTR=FRONT
\ Stepi: SET FROWT=FRONT->NEXT
Stepd: FREE PTR

StepS: END

3.10 Applications of Linked List
Linked Iimmnbeusedmmprmempdmmmsmdm&ﬂhumpcmﬁommumbe performed on them.
Polynomial Representation . :

Consider a polynomial Tx*+6x3+7x+1, Every individual term in a polynomial consists of two parts , a
cocflicient and a power. Here 7, 6, 7 and | are the coefficients of the terms that have 3,2,1 and 0 as theiively,
TPOWer respectively. ;

Every term .,g, polynemial can be represented as a node of the linked list . Fig. Shows the linked

ion of the terms of the above polynomial.
[7]3] {s2] F{7l1] F{1]o[x]

Figure 3.30

Very Short Questions

I:I%I:h data structure overcomes the capability of array?
i i .
lhll;ilin orlxwmum performed over Linked list.
is garbage collection?

Lt

e

70 <« DataStructure (Using C/C++)

5
6.
T
8

What is the running time complexity of operation performed over linked list?
Write difference between Linear array and linked list
Define Multi-linked list.
Give the linked representation of the following polynomial:
IXMOX+8x+1

Eam—— oh0rt Questions —_—

w B M

Long Questions

1
2.
3.
4
5

Write short notes on
(a) AVAIL (b) Free Pool

(b) Null Pointer (d) PREV pointer

Explain the concept of circular linked list.

Explain the concept of Double Linked List.

How could you traverse a linked list ? state with an example.
Write an algorithm on-

a). Inserting a new node at beginning of Linked list

b). Deleting the last node of singly linked list. ;

€). Inserting a new node before given node in circular linked list.

Make a comparison between Linked list and a linear array. Which one will :
i . ! You prefer to use and when’
Why a doubly linked list more useful than a singly linked list?

Expiam the representing way of linked list in memory.
Expiafn the operations performed over circular linked list.
Explain the memory allocation and deallocation concept.

18

