Syllabus wniversi

Fe (Using C/C++)
Code-301

Max Marks: 100

ff_’art-l (Very_Short {\IISW'BI.') consists 10 questions of two marks each with two questibns
orm each unit. Maximum limit for each question is up to 40 words.

Part-11 .(Short.Answgr).consists 5 questions of four marks each with one question from
each unit. Maximum limit for each question is up to 80 words. |

Part-II1 (Lopg {&nswer) consists 5 questions of twelve marks each with one question
from each unit with internal choice.

UNIT -1 - -
Introduction to Algorithm Design: Algorithm, its characteristics, efficiency of algorithms,
analyzing Algorithms and problems. - s

Linear Structure: Arrays, records, stack, operation on stack, implementation of stack as
an array, queue, types of queues, operations on queue, implementation of queue.

UNIT-II
Linked Structure: List representation, Polish notations, operations on linked list —get

node and free node operation, implementing the list operation. inserting into an ordered
linked list, deleting, circular linked list, doubly linked list, implementation of stack and
queues using linked list. ' bt

UNIT - 1l .
Tree Structure: Concept and terminology, Types of tress, Binary search tree, inserting,
deleting and searching into binary search tree, implementing the insert , search and delete

algorithms, tree traversals, Huffman'’s algorithm.

Contents

T

UNIT -1

L
O

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Introduction of Data Structure& Algorithms

Data Type

Data Structure

Elementary Data Structures Organisation
Classification of Data Structure

Algorithm Design of Complexity

Important feature of a working algorithm
Algorithm Efficiency
Different Approaches to Designing an Algorithm
Complexity of an algorithm ; '

1.10 Questions

r

Linear Structure

O VWV PN N

10-39

2.1
PAF
Ees
2.4
23

2.6
.7 Record

Introduction

Linear Array

Representation of Linear Array in Memory
Traversing LinéarArray

Inserting and Deleting

Multidimensional Array

10
10
11
12
12
15
16

2.8 Stack

2.9 Queue

2.10 Typesof Queue
2.11 Questions

16
28
32
38

Introduction

An informatjon is a collection of data that has been translated into a form that is more convenient to move or
to s or can say data are simply values or sets of values. For e.g. an student’s name. is a data which may
be divided into further subitems-first name, middle name and last name. Collections of data are frequently
organized in a hierarchy of fields, records and files. A field is an item of stored data field could be name,
a date, an adchesmachmrmn’w%ian‘ggmm A récord s the collection of fields that relate to a single
entity (means something that has certain attributes or properties -wiiich may be assigned values) for e.g. we
ceutd-have a student record that includes fields for the Students name, address, date of birth etc. Records
can be classified into fixed length record and Variable-length records. In fixed-lgngth records, all records
contatns the smmmﬁ assigned to each data item. In variable-
lemaMi usually have variable length since
different students Take different number of courses. A file is a collection of related records. For example a

student file might include all of the records of student enrolled in a school. Within a file all records have the

same structures. That is every record in the file contains the same fields. Only the data stored in the fields of
different record will be different.

1.1 Whatis Data Type?

A data type is a set of values (e.g. integer, boolean, float). A Data type is type ogggﬂe_étiomfmcm%
manipulates on type.

A data item or element is a piece of information or arecord. A data item is said to be member of data type.
A simple data item contain no subparts (e.g. integer). An aggregated data item may contain several piece of
information (e.g. Payroll record, city database record).

1.1.1 Abstract Data Type

Abstract data type is set of values and associated operations that may be performed on that values. Abstract
data structure or type is define indirectly, only by the operations that may be performed on it and by
mathe-matical constraints on effects of those operations". The classic example of Abstract data types is

set of integers and associate operations that may be performed on integers such as addition, substraction,
multiplication etc.

1.2 Data Structure

There;samnoeptofdatamanagmnmtwhidlisamplexmkﬂmtmcludm activities like datacollection,organization
Dfdma into appropnnte stmchraand davelﬂpmg and I‘hmntaining routines for quality assurance.

iy
P e

2 4 Data Structure (Using /C++)

A data structure is an organization of the data 10 solve problem in such
efficiently by a problem. Program is an implentation of an algerithm in
Algorithm is just an outline, the essence of a computational procedure step by

Data structures are used in almost every program or software system. Som
strucfure arc arrays, Tinked Tists, queues, stacks, binary tree and hash tables
in the following area: T T

a way that data can be access

some programming language

step instruction.

e common example of data
res are widely applied

Compiler design
Operating System
Statistical Analysis
Anrtificial Intelligence
DBMS

Simulation

Graphics

1.3 _Elementary Data Structures Organisation
Data structure 15 basic building blocks of program. A program built using improper data structure may not
work as expected. So its mandatory to choose most appropriate data structure according to need.

L.4 Classification of Data Structure

As we discussed above any thing that store data is called data structure hence integer, float, Boolean,char,
pointer ete all are dara structure. They are known as Primitive data structures or Built-in-data type. But often
these limited datatypes aren't enough and a programmer wants to build their own datatypes. Users can define
their own data 1ypes to handle such limitations of buit-in-type data structures and are called User-defined
Data structures. i

L R

Figure 1.1 Classification of Data Structures Organisation

1.6.1 Builtin Data structure .

« Integer <This data structure used to store Integeral data type values may be
be not be allowed to contain nogative values, 1y be of different size and may

+ Floal
& haraoter
Paointar

Chapter 1 Introduction # 3

1.4.2 User-defined Data structure

a) Arrays: An array is collection of similar data types store in common variable. The collection forms
a data structure where data items are stored linearly one after another in memory. An armay has a set
of homogeneous dasa items. Each elements is reference by index or subseript. For e.g. A[1], A[2].
A[FL.AIN]. Index is usually a number 1o address the item in array.

b) Lists: Army has a major drawback you must knew the maximum numbser of item in your armay when you
create it This presents problem in program in which the maximum number of item cannot be predicied
accurately when the program starts up. So we use a structure called List to overcome this problem, List i
very flexible dynamic data structure; fem may be added or delete from it A programmer need not worry
about how many item will program be accommodate , this allows us 1o write robust program which
require less maintence. A very common source of program maintence is need to increase the capacity of
a program 1o handle larger collection of data. In List each item has allocated space as it is added to List.
List is further categories in two type according to their structure (a) Linear List (b) Mon-Lincar List

+ Limear List: A linear data the data element ially in which only one data item
can directly be reached. Linked List, Stack, Queue etc.

BE

Siack |

o
GTaTaTelzTel 1 1 11
Febet

Queue

Figure1.2 User-defined Data structure

+ Non Linear List: Every data item is aitached to several other data items in a way that is specific for
reflecting relationship. The data items are not sequentially arranged. Morcover removing one of the
links could divide the data structure in two disjoint pieces. ¢.g. Trees. Graphs ete.

+ Tree: Data frequently contain a hierarchical relationship between vasious elements. The data structure
which reflects this relationship is called a rooted tree o simply tree, Tree will discussed later in Chapter 4.

+ Graph: A graph is o datastructure consist of finite sct of vertices or nodes, connected by edges.
Giraph will be discussed later in Chapter 5.

Figura 1.5 Graph Tree

% A patastructure (Using C/C++)

(€} Files: File is collection of records. A student record may comprise item of information such g
student’s name, roll po, registration number, age, grade etc. Individual items of information
record are often called as field of record.

Operations on file;

* Create a file

* lnsert a record

* Search a record
* Deletz a record
* Modify 2 record
* List 2 record

File is organized logically as sequence of record, These records apped into disk block
+ - g & R
organized in file by following method: i SRR
(1) Heap File Organization: Any record can be placed in i
b ! . anywhere in the file where there is space for
ﬂm:';i.j‘i‘hm :ut:::i:r'ﬁ;:r;mng of record. Typically there is only single file for any relation. :
Seq il iz : i i i ir *
B sl ot rganization: Records are stored in sequential order according to their “seanch
(3) Hashed File Organization: A huil function i
(ation: 1on is computed on some other atiribute h recond
The result of hash function specifies in which block of the file record should be places. S

1.5 Algorithm Design of Complexity

1.6 Important feature of a workin algorithm are as follow

1. Finiteness: An algorithm must always terminate after i
a finite number of
2. Definiteness: Each step of an algorithm must be precisely defined m:m‘lnm carried
;gomus ly and unambiguously specified for each case, i ot mutle
Input: An algorithm has zero or more ing i iti i i
algorithm begins. A Biven to i initially before the

a finite length of time. 5
In practice We not only want algorithm but also we
3 o iy want good algorithm
esthetic sense. One criteria of goodness is the length of time taken 1o thm in Some loosely-defined a
complexity, Perform the algorithm termed as time

1.7 Algorithm Efficiency
There are many approaches (algorithms) Iom\—\——__.
] do we choose among th,
em?

Before designing an algorithm our main aim are:
(1} To design an algorithm that is easy o understand code
(2) To design an algorithm that to make efficient mufwz;‘;m.a 1

Chapter 1 > 5

Introduction

“into i

1.8 Different Approaches to Designing an Algorithm

A compley algorithm is often divided into smaller units called modules. This process of dividing algorithm
€5 15 cal . atm. ¢ complex algorithm simpler to design and implement.

There are two approaches to design an algorithm - top-down approach and bottom-up approach.

Tl Bottorn-donn
Approach Approach
0O 0 0 Qoo O 0O O

Each madule can diide into one or more sub-modules

Figure 1.4 Different Approaches to Designing an Algorithm

1.8.1 Top-down Approach

Top-down design approach start by dividing the complex algorithm into one or more modules. These modules
can further be decomposed into one or more sub-modules, their process of decomposition is iterated until the

desired level of module complexity is achieved.

1.8.2 Bofttom-up Approach
Reverse of top-down approach. Here we start with desiging the most basic or concrete modules and then

proceed towards designing higher level modules. In this approach sub-modules are grouped together to form
a higher level module. All the higher level modules are clubbed together to form even higher level modules.

1.9 Complexity of an algorithm
Complexity of an algorithm is a measure of the amount of time /space required by an algorithm for an input
of a given size,
There are two main complexity measures of the efficiency of an algorithm.
Time complexity: It describe the amount of time an algorithm takes in term s of
an algorithm The required time is expressed by the number of time i
the algorithm.
Space com plexity: It describe the amount of memory required during the program execution as the
function input. Generally the space needed.

1.9.1 Worst-case, Average-tase,Best-case and Amortised Time complexity

Maximum number of steps{longest running time) taken to perform an operation to complete the algorithm.
In other words, the worst-case complexity measures the resources(i.c. running time, memory) an algorithm
require the worst case. It gives the upper bound on the resources required by the algorithm,

Best-case: The besi-case complexity of the algorithm is the function defined by the minimum number of

steps taken to perform an ion to complete the algorithm,

B mm&mmmwimm algorithm within average

number of steps. Average case running time assumes that the input of a given size are equally likely.
Amortised Time Complexity: Amortised runn ferd to the time required to perform a seq

of (related) operation averaged over all operations performed. Amortized analysis guarantees the average

performance of each operation in the worst case.

the amount of input of
to pl

6 4 Data Structure (Using C/C++]

1.9.2 Time -Space Trade-0ff

: - i lete its execut
The best algorithm is one which require less memory space and takes less time to compl *Culian,
But practically desigining such an algorithm is not trivial task. There can be more than one algorithm 1,
solve a particular problem. One may require less memory space, while other may require less CPU time
execute. Thus it is uncommon to sacrifice one thing for the other. Hence there exists a time-space irade-of

among algorithms,

1.9.3 Big O Notation
The Big O notation, where O stands for *order of” is concerned with what happens for large values of n. If fin)
and g(n) are the functions defined on a positive integer number n, then
f{n) = Og({n))

That is f of n is Big-O of g of n if and only if positive constants ¢ and n exist, such that f{n)= cg(n)
It means that for a large amounts of data fn) will grow no more than a constant factor than g(n). Hence g
provides an upper bound, Note that here ¢ is a constant which depends on the following factors:

* The programming language used, F

* The quality of the compiler or interpreter.

* The CPU speed.

* The size of the main memory and the acoess time (o it.

* The knowledge of the programmer and

i ¢

The algorithm itself which may require simple but also ti ing i ions,
Big O notation provide a strict upper bound for f{n). This mean that the function n) can do better but
not worse than the specified value . Big O notation is simply written as fin) € O{gin)) or as f{n FO{g(n)).
Fin) = cg(n}, ¢=0, n= n, , then fin)=O(g(n)) and g(n) is an asymptotically tight upper bound for fiim).

»

e

Eh
| Exmmples:
- " -’-w:ml =m0y
wina LI
" bootm =)]
L - 7]
&-M

Figure 1.5 The (Big) O Notation
Categories of Algorithm
According to the Big O notation we have five different categories of algorithm:
« Constant time algorithm: running time complexity given as 01},
» Linear time algorithm : running time complexity given as Ofn).
+ Logarithmic time algorithm: running time complexity given as Oflog n)
« Polynomial time nl_;ori_ﬂuh : running time complexity given as Ok} where k> |
+ Exponential time algorithm : running time complexity given as o2,

Example: Show thatn = n log n)

Chapter 1 _introduction B 7

Solution: By definition , we have

0= him) = cg(n)

Substituting n as hin) and nlogn as g(n)
0= nz= nlogn

Dividing by nlogn, we get

Omlogn=ninlogn<cnlognnlogn
O=llogn=c¢

We know that 1log n -0 as n->

Tio determine the value of ¢, it is clearly evident that |/nlogn is greatess when n=2, Therefore ,
O< 1og2<c=1. Hence ¢=1

To determine the value n we can write
0= logn, <1

Hm.oﬁn:fmlnm:uhm:-lmtnznfz.

Limitattons:

Big O faces certain limitation which as shown below:

* Many algerithm are simply 100 hard to analyse mathematically.

* There may not be sufficient information to calculate the behavior of the algorithm in the average
cise.

* Big O analysis only tells us how the algorithm grows with the size of the problem not how efficient

© il is as it does not consider the programming effort.

* Iignores important constants for example if one algorithm take O(n®) time to execute and the other
takes O(100000n7) time to execute , then as per Big O notataion both algorithm have equal time
complexity. In real-time systems this may be serious consideration,

1.10 Omega Notations
The Omega notation provides a tight lower bound for f{n). This means that the function can never do bester
than the specified value but it may do worse,
- £} notation is simply written as , f{n) € £2 (g(n)), where n is the problem size and
L(glm)) = {h (n): positive constants ¢=0, n, such that O<cg(n) <h(n), n=n}.
Example of functions in ((n%) include: n?, n°*, n*+n%, 0
Example of functions in (4n") include: n, n*®, n°

Example: Show that Sn*+10n = 2 (1)

Solution By definition , we have
O=eg(n) = hin)
Substituting n* as g(n) and h{n) as Sn™+10n
O=n’= 5n+10n
Dividing by n*
0/n*< cn’n? < Snéin*+ 10n/n®
0= ¢ < 5+10in
Now, lim 5+10/n=5
Therefore,0=c<5,
Hence ,c=5

8 4 Datastructure (Using C/C++)

Now to determine the value n,
0= 5 < 5+1ivn,
55555 541005
-520= 10/n,

Son=1 as lim 1/n=0

Hence, Sn*+10n = £} {n) for c=5

1.11 Theta Notations (0)

Theta notation provides an asymptotically tight bound for f{n). © notation is simply written as,
fin) € &g(n)) , where n is the problem size and
©(g(n)) = {hin): positive constant c,,¢, and n, such that 0< ¢,gin) < hin) < c.gin), n=n}.

7

i i H

i) € digtan ™ furEoun ™t g
] L]

™
Figure 1.6 ThetaMotations (©)

Hence we can say that 8(g(n)) comprises a set of all the functions hn) that are between c,8(n) and c_g(n)
for all values), n >n, .

* The best case in © notation is not used , .

* Worst case 8 describes asymplotic bounds for worst case combination of input values.

* Ifwe simply write & it means samé as worst case ©,

1.12 0OtherUseful Notations

Chapter 1 Introduction

> 9

- afg{n)}={hin): positive constants ¢, m, such that for any c>0,n,>0 and O<cg(n)<h{n), n >n, }
This is unlike the 1) notation where we say for some ¢>0 (not any). For example $n'= {(n")

Is asymptotically tight upper bound but 3= i{n") is non-asymptoticallytight bound for fin).

S T —

I Define data structure. Give some example.
2. In how many ways can you categorize dara structures? Explain each of them.
3. Write a short note on abstract data structure.
4. Write a short note on different operation that ean be performed on data structure,
5. Write short note on
(a) Data type (b} File
(b) Record (d) Field
6, What is an algorithm?
7. Explain the features of good algorithm,
8. State down the algorithm efficiency.
9. What do you understand by Complexity?
10. Write short note on :
(a) Time complexity (b) Space complexity
11. Discus the best case, worst case, average case and amortized of an algorithm.
12. What do you understand by time-space trade-off?
13." Explain Big O notation. :
14. Discuss the significance and limitations of the big O notation,
15. Explain £ notation,
16. Explain & notation.
17. Differentiate between Big O notation and little o notation,

There are other useful notatations like little o notation and little & notation which have been discussed below:
(1) Little o Notation -
This notation provides a non-symptotically tight upper bound for f(n). Te express a function using this
notation we write : A
fin)e o{g(n)) where
(n))={h(n): positive constants ¢, n, such that for any ¢?0, and 0= <
::Efump]c of functions in ofn") irwh.ldrelo: %, n'flog n, 2n° Yol B =}
Example of functions not in o) include: 3, n’, 11000,

Example: Show that o’/ 1000 o(n’)

Solution By definition we have
o<hin) <eg(n), for any constant ¢>0
o=n*/ 1000 <cn’
This is contradiction with selecting any c<1/1000,
(2) Little Omega Notation(w) E
This notation provides a non-symptotically tight lower bound for fin). It can be bl 0

@{g(n)), where

EEEURCEEE

Show that n*+50n=C{n2)

Show that n*+ r? +n*= 3In*=0{n%)

Show that n= O{n log n)

Which notation provides a strict upper bound.

Prove that running time T(n) = n’ + 200 + 1 is not O{n")
Prove that running time T{n) = n' + 20n is 0{n?)
Prove that running time T(n) =n' + 20n = | is Ofn")

Chapter » 2
Linear Structure

2.1 Introduction

An array is an aggregate data structure that is designed to store a group of objects of same type or different
types. The way to storing the objects should be linear that's why comes in category of linear data structure.
Linear data structure means, have a]M jonship b the el 'D}'__msyhs of

sequential memary locations. Besides Armay th@lﬁ';l:: come @Wm Here
we have 2 linear relationships berween the elements m‘uﬁ'ﬁi’nﬁm orli

The operation one normally performs on linear dﬂlmn.u follow : -

Traversal: Processing each element in the array/Tist.

Searching: finding the location of the element with a given value or the record with a given key.
Insertion: Adding a new element Lo the array/list. :

Deletion: Removing an element form either an amay or list,

Sorting: Armanging the elements in same type of order. (ascending & descending etc.)

Merging: Combining two lists'array into a single list/array.

N T

2.2 Linear Array : ;
A linear array is a list of finite number of’n'hmw(nhilir!yﬁe]dﬂemw in successive
“The clement of amay aré referenced respectively by an index set constiting consecutive

memory locations.
numbers,
Size of an amay means total number of elements in an array. If not explici assum index
set consists of integers 1, 2,3 nhmghofnwmhm&ﬂbyzmhm:g_ﬂ
Length = UB-LB+1 . 1
Where UB is the largest index called upper bound and LB is the smallest index called lower bound of
the array.

For e.g. We have an array such as

[(7[e]<Te7] om
2 3 4

1 5 Index sat

thapter 2 LinearStructure B 11

Length = UB-LB +]
= Sa0+]
=5
" “This array has five data clements, ; .
- ‘Each programming language has its own rules of declaring arrays. Each such declaration must given
implicitely or explicitely three items of information (1) name of the array (2) data type of the ammay and (3)

index set of the armay.

2.3 Representation of Linear Array in Memory

Let LA be a linear array in the memory of computer. Memory of the computer simply 2 sequence of addressed
locations as pictured in figure.

Computer Memaory

Elements of LA stored in successive memory cells. First element address denoted by Base (LA) which
we have to remember to calculate the address of any elements of LA.

LOC (LA (k) = Base (LA) + w (k-lower bound)

Whiere w is the number of words per memory cell for the array k is subscript.

Example: Consider on array (CAR, which records the number of Cars Sold each year from 1981 through
2001 Suppose CAR appears in memory as pictured shown. That is Base (CAR)=300, and w = 4 words per
memory cellior CAR, then-

LOC (CAR [1981}=300

LOC (CAR [1982] = 304

. The address of the array

element for the year k=1999

€an be obtained by using formula.

LOC [CAR (1999)]= BASE [CAR] + w (1999-lower bound)
=300 + 4 (1999-1981)

=300 + 4 (18)

=372,

12 -« pata Structure (Usi 4]

Rl

.

Figure 2.1 Representation of Linear Array in Memory

2.4 Traversing Linear Array

Traversing a linear array means moving through sequentially node by node. Processing the data element of a
node may be complex but general patern is as follows:

* Begin at the first node,
* Repeat until there are no more nodes.
* Process the a¢cessing node.
+ Move to the next node.
Algorithm: Traversing a linear Array
(Here LA is a linear array with lower bound LB and u UB, 3
each element of LA). i p g Rk e paei e
1. [Initialize counter] Set K : = LB
2. Repeat Step 3 and 4 while K < UB
[Visit node]. Apply PROCESS 1o LA [K)
[Increase counter] Sei K=k +]
[End of Step 2 loop]
3. Exit

2.5 Inserting and Deleting

Let LA be a linear array. Operation of adding one more data ¢ i

whereas "Deleting” refers to the operation of removing one of lheh::emll'ﬁ.‘x fermed as **Insertion”
Inserting an data clement at the “end” of a linear array can be easily do ki

for array is enough to accommodate the new one. But if we want to add an ﬂ“ because memory space

data element or in middle of the array then on the average half of the eleme, ement in between the two

to new | o acco the new el tand keep i must be moved downward

the order of the gther elements,
Algorithm: Insertion in a Linear Array. :

10

Chapter 2 LinearStructure 13

Here LA is a linear array with N elements and k is positive integer such that K = N. This algorithm inserts
an element ITEM into the Kth position in LA,

Insent (LA, N, K, ITEM)

1. Set J=N (Initialise counter)

2. Repeal steps 3 & 4 while) > = K
3. Set LA[J+1]= LA [J] {(Move J* clement upward)
4. SetJ= J-1{Decrease counter)
[End d step 2 loop]
5. Set LA [k] = Item (Insert element)
6. SetN=N] (Reset N]
7. Exit
Example:
T LT 36 I O S e e
Insen o 1 2 a 4 5 8) L]
Insert in between E & G
serlejelofelelw]] T . T]
o 1 2 3 4 5 8 7
- New [aATeTecToTeTrJe] T T T]
LA 1] 1 2 3 4 5 [} 7 8 92

Algorithm: Deletion in A Linear array.
Here LA is a linear array, amay with N elements and K is positive integer such that K < N. This algorithm
deletes the k™ element from the LA,)
Delete (LA, N, K, Item)

I SetITEM =LA [k]
2. Repeat for J=K o N-1
Set LA [J] = LA [J+1] [move J+1 element upward)

[End of step 2 loop)
3. SetN=N+1 [Reset the number N of elements in LA]
4. Exit
Exampie:

1.8 % 4 6 & 7T
(]2]slulsTealr] |

1 2 3 4 5 8 7

et Cilz[wlslsle]7]]
1 2 3 4 13 B 7

iy Cilz[s[slelwlr]]

Step3 - 1 2 3 4 L] 8 T

K EIEXC1 CIE

14 4 ostasucure(using@fCes) ——

SORTING AND SEARCHING will be discussed in lmrd-llﬂ"
half of the clements must move down word to new ocations 10
Similarly deleting in the middle would require that each subsequ
10 **fill up” the array. Deleting an element at the *'end” of an amay

A program to insert 8 number at 3 given location in an array

accommodate the new element, .
ent element be mored upward in order

has no complexity.

b

scanf (™ §4", &num);

™ \n enter the number to be inserted : ");

printf(™\ n enter the position at which the number has to be added -- el

scanf (™ §d*, &pos);

are(i
arr(pos]=num;

for{i=Qzicn; i++)
printf (“\n arried] = %d*, {,acc[i]);

getchi);

return 0;

¥

wﬂu.m-toﬁmamhhtﬁumnuaw_

f include <stdio.h>
include <conio.h>
int main()
{
int i,n, num,pos,arr(l0};
clrser{);
printf(™ \ n Enter the number of elements in
acanf (“#d”, éarc[10)); -
for(imbzicn: i++)

peEintf ™\ n arrivd)=",4i)s
scanf (* #d*, sarr{i));
}

(" %\ n the arzay afrer insertion of %d is]

.

", num);

the array«),

1

Chapter 2 Linear Structure B 15

PEARLL(™ \n anter the position from which the nusber has to be deleted
*)i
scanf (™ ", spomx):
for(i=possi<n=1;
arr(il=arr[is+

E++)
{

==
printf(™ % n the array after deletion of %4 is : ¥
for(i=0;i<n; i++)
printf("\n arc(dd) = ¥d*, f,accli]);
getch(}i
return 0;
}

2.6 Multidimensional Array
The linear array discussed so far are also called **one dimensional array where accessing its elements involves
a single subscript which can be either represent a row or column index.
1 2 3 4 5 6
KN ENE

Ammays can have more than one dimension such arrays are called multidimensional arrays. They are very
similar to standard amay with exception that they have multiple subscript (set of square brackets after the
array identifier).
Two Dimensional Arrays
A two-di ional array A is a collection of m rows and n col ining data ek

element is specified by a pair of integers (such as J, K) called subscript.
I<i<mand 1=K =<n.

such that each

AC decl of a two di | array as

A[LK]

How to the data el of given in multidimensional array?

Let “two-di ional array mx n. The computer keeps. track of Base (A)- The address of the first element

A[1,1] of A and computes the address LOC (A [J.K]) of A (J,K) using the formula.
{Column-major order) LOC (A |J, K| = Base (A) + w (M (K-1) + (J3-1)]
or the formula
(Row-major onder) LOC (A |J,K]|= Base (A) + w [N (J-1) + (K-1)|
in Again w denotes the numbers of words per memory location for the array A. Note that formula are linear
Jand K

Example: Consider the 25x4 matrix amay SCORE. Suppose Base (SCORE)= 200 and there are w= 4 words
per memory cell, Furthermere suppose the programming language stores two- dimensional arrays using row-
major order, Then the address of SCORE [12,3] the third test of the twelveth student follows:

LOC(SCORE [12,3])= 200+4 [4(12- 1) + (3- 1)]
_ = 200+4 [46] = 384

16_ < Data Structure (Using C/C++

2.7 _Record ject may be physical
Record is a collection of pieces of information pertaining to a single ae mﬂ??ﬂu::;nl% n:me |-:|;

conceptual. For example a stuent record may comprise items of InfOTM AR S0 ° ok
number, registration number, age. grade inSemester |, grade in semester z'u:'Awm overdraft limit, ete
account is a conceptual object) may comprise account holder's name, present This notion of & record

(The individual items of information i a recordare often called ields of the recons. This notion 074 record
also provides for the existance of multiple instances of a type of | 1., there may djse_w-‘ru et
records (each about a distinet student abjm),mnmlbmlﬂwlm (each about a lmncl account),
The sizes of individual instances of records of the same type may be same or allowed to vary.

2.7.1 Representing a record in computer &

Each field of a record may be represented (i.¢. held in memory and processed) in a computer system by the
data abstraction mechanisms provided by the programming languages. Data abstraction mechanisms mean
built-in data types in a language and user defined data types. Further most programming languages also allow
user to define composite data types (viz, struct and unicn in C, class in C+, record in Pascal). In these
mechanisms when a record is identified its constituent fields can be identified (accessed). So records can be
represented in a computer using such mechanisms,

2.8 Stack/Queue
Besides Armray and linked lists, stack and Queue are also linear data structure, Stack and queen also used to store data
elements in sequential onder in the memory space of computer.
A stack is a li mw or deletion of data element only at one and that's wie
end) Stack are iit-first-Ouut i fast item 10 be added is the first item fo be removed,
For example, the tennis balls in their container. Ball remove which was last insert and no two balls on be remove
al same time. ?
A queue is a linear list in which addition or deletion of data element only at one end. As we wait bus
s:andisananmpl:ofqucue,Firs:pwmmdwlhekmﬁmpmwhummmmw:edus
first-in-first out lists. i .

2.8.1 Stackis Abstract Data Tybeand Linear Data Structure

In stack addition of new element or deletion of existing clement always takes place at a sam; i
end, This end
is known as the top of the stack. That means that is possible to remove elements from ,;Mk in ,.;:em

-order from the insertion of elements into the stack. Also called as LIFO (last in first out). One other way of

m"mMsm“"m‘hﬁmw'mmlmdﬂ!qpeuﬂwmm
Example: 10, 20, 30, 40, 50

50 r— Top of Stack 50

40

30

- i

10 ‘““-_.__/\‘.
Structure of Stack i

12

Chapter 2 _Linear Structure B 17

10 is the ﬁr.st data element which first enter in stack, then 20, 30, ... 50 on 50 is on the top of the stack.. 50 be
the first which remaved from the stack, which enter last in the stack.

2.8.2 Operations on Stack

The stack is basically performed two operations PUSH and POP.
Push and Pop are the operations that are provided for insertion of an element into the stack and the
removal of an element from the stack respectively,
PUSH: PUSH operation performed for the adding item to the stack.
POP: Pop operation performed for removing tem Trom 3 stack
PUSH operation:
Example: Suppose the following 6 elements are pushed, in order, into an empty stack.

AA, BB, CC, DD, EE, FF

Step 1: Push AA
. s 0 ‘
Step 2: Push BB
= =
]
© Steps 3: Push CC
€C |-Tep
BB
AR
Step 4: Push DD
; 6 |-Top
[«
i BB
] _M
Steps 5: Push EE R
P& m a
oD
p [+
F BB
/ %
Step 6: Push FF
FF |+ Top
EE
[+[7]
[«]
B8
AR

Right most element in the above amray placed at the top of the stack.

18 <« pataStructure 4

Write a program to perform Push,Pop operation

¥ include <stdie.h> i
include <conie.h»
Bdafine MAX 10
int st(MAX], top=-1;
void push(int st(],int val);
int poplint, st[]}:
veid display(int st[l);
int main()
{
int wal ,option;
clrace():
do
{ ;
PEARLE(™Y n ****sMATN MEND*#+=*");
pEiRtE(™\n 1. PUSH ")};
printf{” \n 2. POP“};
printf{"\ n 3 DISPLAY"};
printf(™ \n 4 EXIT");
printf(” n\ Enter your opticn: ")}i
scanf (“%d ~, &eptien);
switch loption)
i
Case i:
printf(*\ n Enter the numbar to be pushed on stack :");
scanf (* &d*, &vall;:
pushisc, walljy

break; |
Case 2:
val=pop(st)
ff(vall=-1)
printf{"\n The value deleted from the stack is 1%d™, wal);:
braak; .
Case 3:
display(st);
break;
iwhile(optioni=dq4);
gatchi] s
return 07 i

}
void push (int st{], int val)
i
if (top = =MAX-1)
{
printf(* \n STACK OVERFLOW®);
}
elae
i -
Loptes o

13

Chapter 2 Linear Structure B> 19

at(topl=val;

nt poplint st[])

-

int wval;
" if (top = = -]
i
prEintf (™ \n STACK UNDRFLOW");

return -1;

1

alse

| val = stitopl:
top-=;

return;

1
void display (int at(]}
LI
int i;
if (top = = -1
printf(* An STACK IS EMPTY"):
else
LI
for (i=topyi>=03i--)
princtf(™ nid *, stiil):

[
b
POP operation
Example: Suppmhﬂtamkﬁf!ehnmpmmm:kmm
(EE |
| DO |
cC
BB
AR

for pop out DD, use have to pop first EE from the stack
step |

t

because deletion always done at top of stack

2

20 4 Dpata Structure (Using C/C++)

siep 2

Example: Operations to Perform

1. Delete EE
2. Delete CC
3. Add GG
1. kahwdﬂﬁkmmmhmdmﬁkmmmﬁlm
. hﬁl‘tPﬂ.EEFFn&bwdTMehuumbepoppndﬁmhMmlyhhmwﬂﬂ
of that in which they were pushed onto the stack,
POP FF
3] Rk
BB
A
FOP EE
cC [
BB
L)
2. Now DD is on top of stack. Our aim is to delete CC,
POP DD
CC | Topof Stack
B8
AR
POPCC
E l—-Twemu

3. GG is to insert in the stack.
Push GG

3(8(8

Top of Stack

14

Chapter 2 _Llinear Structure B 21

2.8.3 Over Flow Stack

Ench stack has deserved amount of memory space. The condition, when stack is fully occupied, no more
memory space to hold the new one element, such stack is called overflow stack.

Example: Suppose a stack of 6 elements overflow will occur when stack contains more than 6 elements.

2.8.4 Underflow Stack

If POP operation apply on an empty stack, underflow condition met. Empty stack has no element to pop out.
Such stack is called underflow stack.

z.a.ﬁ Array Representation of Stack

Stacks may be represented in the computer in various ways, linear array and linked list. Here we discuss array
representation of stack. Let us assume that the name of the linear array be array be arr and this array can hold
maximum 6 integer numbers.

There are two representation ways of stack,

2T eTeTel T 1]
R T T T L]
Top Max Stack ;

(i) Horizontal Representation (ii) Vertical Representation

Top variable, whichs contains the location of the top element of the stack; and a variable MAXSTE,
which gives the maximum number of elements that can be hold by the stack. The Condition TOP = 0 or TOP
= NULL will indicate that the stack is empty. In the above array TOP=4, the stack has four element 2,4,6,8
and since MAXSTK=6, there is room for 2 more data elements in the stack,

2.8.6 Application of stack

In this section we discussed about the problems where stacks can be easily appliéd for a simple and

efficient solution,

Reversing a List

Paranthesis checker

Evaluation of a Airthmatic Expression

Conversion of an infix expression into a postfix expression
Conversion of an infix expression into a prefix expression
Rg:u.raim

.
.
.
.
.
.

(a) Reversing aList

Alist can be reversed by reading each number from an array starting from the first index and pushing it on a
stack. Once all number have been read , the numbers an be popped one &t & time and then stored in the array
(in reverse order)

Reversing a list

22 A Data Structure (Using C/C++
. We reverse the order,
Example: We have a stack of 4 clement having order DD, CC, BB, AA

For this purpose, we use two stacks,

A
. By applying Consecutive
T s R
88 | POP & PUSH
s] Taavarss LWt

Oreginail Ligt
Algorithm: PUSH (STACK, TOP, MAXSTK, ITEM)

I [Stack already filled?]
I Top = MAXSTK, then : Print : Overflow, and Retum
Set Top = Top +1 [Increase Top by 1]

Set Stack [Top] = ltem [Insert Item in new Top position)
Retumn

Algorithm: POP (Stack, TOP, ITEM) A
This procedure deletes the top element of STACK and assigns it 1o the variable ITEM.

1. Ismhasanimmber:mvmj

2. IF Top=0, then : Print ; Underflow, and Return
3. SeTop- Top-1 [Decrease Top by 1]

4. Retumn

(b) Paranthesis Checker

In algebeaic expression , for every open bracket there i comesponding closing bra ;
is invalid but an cxpression (AHB-C)} is valid. Closing bracket. For example (A+B)

Wﬂh'mwdﬂm:ﬁmmw.m

§. include <stdio, h>
t include <conie, h>
f include <strimg.h>
define MAX 10
int topm=1;
int stk[MAX];
vold pushichar);
char pop;
velid main();
{
char &xp [MAX] , temp;
int i, flag=-1; r
clrser():
printf (™ Enter an expression :*),
gets {exp) ;
for{i=0; i<strlenifexp;; desy
{
Lf faxmp(i]e=’(*]] XD [)mat [4y Iﬂplj,]-'l‘l

bl ol o]

Chapter 2 LinearStructure B 23

Push (axp[Li])s
1f fexplil==f)*1| expli)==")*||axp(i]==’]*}
If (top==-1}
flag=i;
else
L
temp=popi) 2
if (exp[i]m=r) g6 (tomp==" [*| | temp==" [']}
flag=0z
Lf [oxp[i)==’}‘ gL (tampus’ ['] |temp==’ ['])
flag=0;
Lf (exp(i]==’ ¥ £ (Compemm=’ |] [temp==’ [']}
]

if (top>=0]

flag=0;

if (flage=1)

printf{*\ n Valid expression”);

alsa
printf(* \n Invalid expressicn”);

i
void push{char c)

VR
if (top==(MAX-1})
printf (™ stack is Overflow”);

else
i
top=top+l;
stk(top)=c;
.
char pop()
1

if (tope=-1)
printf(* stack overflow”);

alse
return (stk[top=-=1]);

}
(t) Evaluation of Airthmatic Expression

* Polish Netation
Infix Postfix and Prefix notations are three different type of notations to write an algebraic expression.

Operators are written between operands . This is the usual way in which we write.An expression such
& A*(B+C).is usually taken 10 mean something like “ Firsi add B and C together, then multiply result
0 A. Infix notation needs extra information 1o make the order of evaluation of the operators clear: rules

15

24 4 DataStructure (Using (/C++

ity and brackets () toallow userg,

- ativ 2
built into the language about operator precedence and assotl say that we perform operations from

override these rules. For example, the usual rules for associativity
left 1o right so the multiplication by A is assumed to €0
rules for precedence say that we perform multiplicatio
subtraction. 5 i wrilien =

+ Postix Notation (slso known a5 Reverse Polish Notation): Operviory o me or':ff..’u:?‘"
operands. The infix expression given above is equivalentto 2o B this order. Because the “4" o
of aperators is always left-to-right, and brackets cannot be used to change this I-It' licati 5ty
the left of the **" in the example above, the addition must be perfmmdbeftﬂ'eth:mu:pﬁ m&cf. E)pemm
act on values immediately to the left of them, For example the *+" above USts thy: TE e €. We cm
add (1otally unnecessary) brackets to make this explicit: { (A (BC+)*) D/) “'{“f- the “*™ uses the twy
values immediately preceding: “A”, and the result of the addition. Similarly, the */" uses the result of the
multiplication and the “D™.

n and division before we perform addition s

+ Prefix Notation(also known as "Polish Notation®)

Operators are written before their operands. The expressions given above are equivalentto / * A + 5 ¢
* 0 As for Postfix, operators are evaluated left-to-right and brackets are superfluous. Operators act on the two
nearest values on the right. | have again added (totally unnecessary) brackets to make this clear:

[/ (*R(+BC))D)

) Alfhuuiﬁ Prefix “operators are evaluated left-to-right”, they use values to their right and if these values
i invalve ons '.h".'hi" changes the order that the operators have to be evaluated in. In the
example ahove although the division is the first operator on the left it acts on the result of the multiplication

and 50 the multiplication has to happen before the division (and similarly the addition has to happen before
the multiplication),

(d) Conversion of an Infix Expression into a Postfix Expression
We have an algebraic expression written in infix notation m
For simplicity we use +.-.*./,% operators. The precedence

High Priority * /%

Low Priority +,-

The precedence works, we have an expression like A+B% gt added
into the result. But if same expression writien as (A+B]‘CB wcii!mr;mc g il
be multiplied with C. : A*B first and then the result Wi

One maore thing is important that if same operators !
to-right. " 2rc ppear then precedence are performed from left-

Stack is temporarily used to hold operators, The postfiy el
operands from the infix expression and the operators which ;‘mmm from left-to-right using

the stack
Example: Convert the following infix expression into postfiy -
() A—{B/CHD%E*F)G)*H
Solution:

Conversion of an infix expression into amﬁ:m

ay conatain parentheses, operands, andw
of such operators are as follow:

W'hs stack

16

10 come before the division by D. Similarly, the sty

Chapter 2 Linear Structure B 25

A { A
i { A
C It} A

B (%] AB

i (4 AB
[+ =i ABC

+ -4+ ABC/

C (e ABCY

D [ER ABCD

% (% ABCT

E ({+{% ABCIDE

. (A+{%* ABCDE

F (% ABC/DEF

' -+ ABC/DEF*%

' ({4 ABCIDEF*%

G {4+ ABC/DEF*30

i ABCDEF*%G/+

2 (-=* ABCIDEF*%GH
H - ABCDEF*%0/+H

J ABC/DEF*¥elii+H

(e) conversion of Infix Expression into a Prefix Expression
Work same as above method done.

Write a program to convert an infix expression into its equivalent postfix notation.

¥ include <stdiec.h>

§ include <conio.h>

include <etype.h>

include csr_rl.lnq.h:'
define MAX 10

char st[MAX);

int top=-1;

void push{char st[],char);
char pop(char stl])s

void IffixtoPostilx(char source(],char target(]}:
int getpriority(char);

‘souce(i] = =)

4 __ Data Structure o4
int main()
1

char infix[100), posthx(100):

clraer()s i - 5
printf(~ \n Entry any Infix Expressicn 2 1 .
gets(Infix)z

strepyi{postfix, ™ ")
InfixtoPestfix [infix, postfixls
printf(™\n The corresponding postfix expression t
puts (postfix);
getchil g
return 02
1
Void InfixtcPestfix{ char source[], char target[])
{
int i=0,§=0;
char temp;
strcpyitarget , = <);
while (source[i] l="0")
i
if(sourcali)s=" (")
{
push (st, source(i])
s
]
else Lf(sourcelij= =*)7)
1

5" 1

while (({top!=l} & (at(top]!=* (%))
[

target [jl=pop(st)s
ey

]
if{top= = -1}
{
printf(* \n INCORRECT EXPRESSION“) ;
exit(l);
I
temp=pop(stls // remove
oo lefy ”“u."““
b
e¢lse ifi{isdigit (source(i i
. 1 it halphﬂmrmml
target(jl= scurce(i];
J4+s
ity
¥
elae if (source(il= = 1er source({]a
- e
! A

vily (0 Gopt= -lb & (stieopyie e
T

Il sourcapy) = = /¢ I

(90tprioeity (at(topl!’

17

Chapter 2 _tinear Structure B 27

getpriority{source(i)))}
i

target[j] = popiat):
J+ep -
b
push{st, sourceli]):
i44g
1
alae
I
peintf (™ \n INCORRECT ELEMENMT IN EXPRESSIGNT™I:
exit(}s
]
}
while ({topl= -1) && (st(kop]l!="{*))
[
cargetijl= popisti:
jeer
i
target[j]='\0";
1
Int getPricrityichar op)
i
iflop= = /! || op = ='*" || op= = 37
return 1
else if (op = ="+#' || op = =*=")
return 0
1
Void pushichar at[], char val)
]
if { top= = MAX-1)
printf(*\n STACK IS OVERFLOW™)}
else
1
roptti
- sttopl=valy
b
! i
char popichar st(])
{ .
char val =' %
if (top = = =1}
printf("\n STACK UNDERFLOW™)
alse 1
|
wval=at(topls
tope=;
)]
return valjy

28 <« Data Structure (Using {/Ce+

(f) Recursion -
f its task untj
A recursive function is defined as a function that calls h‘f‘]rww.’w:‘::]:::z::;gi tln.m:pn“r:-lil|:::
call is made which doesnot require a call to itself. Recursive functio K
the returm address and local variables of the calling function. %
To understand recursive functions, let us tzke an example of fﬂm:' l‘;;:::";‘::: : ;;";’J::"::* ni,
we multiply the number with factorial of the number that is I less onds,

Let us say we need 1o find 6!

6!=6 x5 x4 x3x 3 x]

=710

This can be written as 6!=6 ~$! Or 6!= 6x5x4!

Every recursive solution has rwo major cases:

Base case: in which the problem is simple enough fo be solved directly without making any further calle

o the same function.
Base case is when n= | because if n=1, the result will be 1 as 1!=]

Recursive case
In which first problem is divide into simpler sub-parts . Second the function calls itself but sub-parts the
problem obtained in the first step. For eg. 6!=6x5!

2.9 Queue
Queue is also an sbstract data rvpe or a linear data structurs in which the first element is i
¥ is inserted from oot
mi;agﬁnun (2130 called tail) and the deletion of existing element takes place from the other and called
as (also called head). This makes gueue as FIFO structure which means i
first will also be removal first. e i SO
Queue abound in everyday life. The automobiles waiting to through an i 2
in which the first can in line s the first car through: As impotmsmmplg e ekt s
seience oceurs in a time sharing system in which Ppropgrams with the same - :}qucue = me'l:fT:
waiting to be executed. priorkty o 2. uowo Wit
Representation of Queves: Queus m be represented :
uth'amislcsuwdor impli_u_t. each of our queu:ywill b-emlim.ina:iyl:r:lwa::-{ U:&“y e “n!e::
varJaI:Ie._FRDNT. containing the location of the front elemen; of the queue; ‘“da:hs";l_g:;d::n‘:;:;g
« The conditions FRONT=NULL wil] indicatethat ducué

Let take an array queue with N elements The f
will be deleted from the queue and the way new sslmmmw:i:rtkm also indicate the way elements
element is deleted from the queue, the value of FRONT js j added 1o the queue. Whenever &0

. the assignment, nereased by 1 this can pe implemented bY

FRONT = FRONT + |

Similarly, whenever an element is added queue,
_ implemented by the assignment. s » the value of REAR s increased by 1; this can b

REAR =REAR +1

18

Chapter 2 Linear Structure

'1'.' [? TR M lmqsmmm
REAR FRONT
[T)
mom om oW ™ M
T Hars Slamant Add 16 quae
FRONT REAR "’RE“A’_EE;'{“'
! 7 l 1 [[[I | N i

FRONT REAR
[z]e]v[] T 1 1
mo@mo® Hll!i!] l e
~ FRONT REAR
[alsTFE T 1 T 1 Tslulef | []
Mm@ P E ™ |1IBIIHE'I(§I ™
FRONT le REAR
™ ®
Here Elament remov fom quews
FRONT=FRONT +1

Algorithm:) Insert [Queue, N, FRONT, REAR, ITEM]
This procedure inserts an element ITEM into a queue
1. [Queue already filled?]

If Front = | and REAR=N, or if Front = Rear+ 1, then : write, overflow and Retum.

2. [Find new value of REAR]
If Front = Null, then : [Queue initially empty]
Set Front=1 and REAR=1
clse if REAR= N, then
Set REAR=1
Else
Set REAR = REAR +1
[End of if structure]

3. Set queue [REAR) = ltem [this insert & new clement]

4. Retum

» 29

30_ < Data structure (using C/Ces Chapter 2 Linear Structure = 31

Algorithm: Q DELETE [QUEUE, N, FRONT, REAR, ITEM] e ITEM, insert () ;
This procedure deletes melmmﬁw;quanmdmiﬂﬂuwmm . mb;a_;;f_- - podk

L. [queue already empty 7] val=delete element();
1)

IF FRONTC= NULL, then : write : Underflow and Retum if (valt
2. SetITEM = QUEUE [FRONT] PrAntf(™ \n The first value is queue is : wd”, val);
3. [Find new value of FRONT] break;
IF FRONT = REAR then : [Queue has only ene element o start] case 3;
Set FRONT = NULL and REAR= NULL - Yal=pauk();
SE{I:GFES:?:T=NI}:“: Ii::f::t!..!-[“_\l::The first value in queue is : %47, wvalj:
e'“ Cﬂ:’&re:{kr
Set FRONT = FRONT +1 P
[End of if structure] break;
4. Retumn. 1
When we remove element from queue, we can follow two possible approaches (mentioned [A] and [B) l:::ﬁ] JRRE A=)
in above diagram. In [A] approach we remove the clement at FRONT position and then one by one move s E,tum o
lheolhcrclemenr_smposiﬁmfmIn[&]mmmmuemmmﬁﬂTpmﬁhﬂ Ju g T
then move FRONT to the next position. void insert()
Inlppfoarb[ﬁ]?hemisoveﬂmdufahiﬂhglhduﬂﬁﬂmewﬁhnﬁrwldmlﬁmmm {soea :
theﬁrsr.elem-:nl.Inapprmh[ﬂlﬂmiammmmnhnermmmpmiimum* int . num;
removal of first element, the size of queue is reduced by one space cach time. printf(“\n Enter the number to be inserted in the gqueue :7);
A scanf [™, Enm
Write a program to implement & lnear Queue. u[m,[..,,;i_,_, !

printf{*\n OVERFLOW™);
else if (front==-1 &6 rear==-1)
front-rear=0;
else
rear++;
queue [Fear] =num;

¥ include <stdio.h>
¥ include <conio.hs
include <string.h>
define MAX 10
int queue [MAX]
int front=-1,rear==1;
wvold insert (void);
int delete element (void); 1 .

int delete_element()

int maini)
] i
int option, wval; int wval;
clrscr(); if {fzont== -1 || frent>rear)
do {
{ printf (*\n UNDERFLOW*):
returm -1;

prIntE(™ \n\n **+separy MENU* & s auey
printfi{™n 1. Insart ap elemant®) ;
printf(™\n 2. Delete an alement™);
printf(*\n 3. Peek”);
printf("\n 4. Display the quaue”) ;
printf("\n 5. EXIT#),

printf(™\n 6. Entéer your optiep 1oy,
scanf (" #d”, Soption}; g
switch(option)

¢ :
i }

]
val=queue|front];
front++;
if {front>rear) .
front = rear=-1
[-
if(fronterear= -1)
return 0:

case 1:

19

32 4 Dara strucure [usi a)

i froat>rear)
% Queve Is Empry™):

2.10 _Types of Queue
a“mm:mhmbkmm

1. Circuler Quene
1 Degue
3. Priority Quene
4. Muktiple Quee
u&ﬂomnmhdﬁlihﬁlbr‘-gm
Circular Queue
:;.;m:mmiﬂd%r&'mﬂ"““muhw*hmnm
will ncx be possibie, R 10 insert new element in full occupied quett
Consider 2 livear quene a3 shown below

Here front =2 and Rear=9

mnzunmmamh‘.uh
there is condition of Overflow . To Wﬁm“&m%h.mm_mﬁ
ition shift the element t©

20

Chapter 2 Linear Structure 33

side so that vacant space is efficiently utilized, But this method is time-consuming,especially when queue is
quite large.
The second Opllion is 1o join the Rear to Front ends of queue to make queue as circular queue.
Circular queue is a linear data structure . It follows FIFO principle.

Figure 2.2 Circular Queue

In circular queue the last node is connected back to first node 1o make it circular
Circular queue follows First In First Out principle.

elements are added at rear end and the elements are deleted at front end.

Bothe Rear and Front pointers points to the beginning of circular queue points.
It is also called as “Ring Buffer”,

. Circular queue is full only when Front=0 and Rear=Max- |

Write a program to implement a circular queue

¥ include <stdio.h>

¥ include <conio.h»

define MAX 10

int queue [Mhx]

int front=-1,rear==1;

void insert (wvoid)

int delete_selement (void);

int peek(woid):

void displayivoid);

int main()

i
int option,wval;

cleser();

do

]
Printf(*\n ****+ MAIN MENU *=+** =)
Printf(* ‘n 1. Insert an element *);
printf(* ‘n 2. Delete an element “);
printf(™ \n 3. Peek ");
printf(™ \n 4. Display the Queue ~};

printf(" \n 5. EXIT "):

Printf (™ \n Enter your optionm :

scanf (“#d”, soption)s

Pla G

34« _Data Structure (Using G/Ce+) - ————— _ thater2 unearSiuure ® 35

switchicption) int val;
i if (front = = .1 ¢ P

casa 1: i
inserc(); printf(“\n UNDERFLOW™) ;
Break: return -1;
cage I - 1]
val=delete elementi); wal=queue[frant);
if{wallel) Lf(fronte=raar)
PEINEL(™ \n The nuzber deleted is : ¥d”, wval)s frontmrear= -1;
Teak: i olaa
case 3: L
Val=peek if fronterear= -1
if (valim=1) front=0;
ihe first value in Queue is : 8d”, wal); . else
front+;

return val;

Eresk; '
X , int peek()
} lefoprionia=s) i
ekl if (front== =1 £& rear== -1)
rgturn O;

{
: printf{*\n Queue Is Empty ~};
void inserc()

return =1;
f)
inat num; else
PTintf(“\n Enter the number to be {nserted in'the queue :=); { 2
scanf(§d*, inum) return queuve(front];
if{front==0 §& rearss=pax-1) % l
Prints(“\s OVERFLOW~); 1]
else if (front = = -1 g§ rear = = =1) i woid display()
[
fronterear=g; % . int i3
quete [rear | =num; : printf("\n “}:
} : if (front = = -1 && rear = = -l)
olse if (rear~MAX-1 §5 front!w0) ' printf(™ \n Queue Is Empty™):
! : else
rear=0; {
queue [rear | =num; ; if (front<rear)
{
} for (i=front;i<=rearilt+)
else . | printf("\t d*, queus(i]ls
{ |
rear++; elsa
queues [rear] =num; 15 {

| ; 1
! | for(i=frontsi<MAXzivt
’ "k peintf ("\t Wd”, queue[ills
: for (im0 Lcmraar)it+] IOy
} 1 : printf ("\t Wd~, queue
int dolets_elsment ()
i r ;

21

4 Data Structure (Using C/C++

}

¥
Algorithm to insert an element in Circular Queue

Stepl: IF FRONT=0 and REAR=MAX-1
WRITE "QVERFLOW™
GOTO STEP4
Stepl: IF front=-1 and REAR=-1
SET FRONT=REAR=0
ELSE IF REAR=MAX-1 and FRONT!=0
SET REAR=0
ELSE
SET REAR =REAR+]
[END of IF)
Stepld: SET QUEUE (REAR]=VAL
Stepd: EXIT
Algorithm to delete an element from a Circular Queue
Stepl: IF FRONT=-1
*WRITE "UNDERFLOW®
GOTO Stepd
[END OF IF)]
Step2: SET VAL=QUEUE [FRONT)
Step3: IF FRONT=REAR
SET FRONT-REAR=--1
ELSE
IF FRONT=MAX=-1
ELSE
SET FRONT=FRONT+1
[END OF IF]
{END OF IF]
Stepd: EXIT

For insertion, three conditions have to check:
1. If Front=0 and rear= Max-1 , then the cicular queue is full
T A T T I I T N
FRONT=0 1 2 3 4 5] T ? S=REAR
FULL QUEUE
2. If Rear != Max-| then Rear will be incremented and the calue will be inderted as follow
[e0 T41|T|15l14]3@|‘5|211 V[
FROWE "1 2 A U8y e
Queue with Vaccant location :
3. ll’F‘ront!=Dande=Mat-l,lhmﬂ‘5¢qmilnu!’nil,so set Rear=0 and i the Jement.
Z ' insert the new ¢

= ’m|7[1slllllulu]21.||o|a_|

i} 1 2 3 4 B - =
Set Rear=0 and insert the value here i

22

Chapter 2 Linear Structure = 37
To delete an clement, again we have to check three conditions:
I, IfFront=-1, then there are no clements in thw queue . So, an Underflow condition is occur
g 1 H 3 [5 [} 7]]
FRONT=REAR~=-] L’ Empty Queue

ra

If the queue is not empty and Front=rear, then after deleting the element at the Front of the queue
becomes empty and so Front and Rear are set 1o -1.As shown in figure

[[() . [at |
o 1 2 3 4 5 L] 7 8 FROMT=REAR=§
Delete this element and3 set Rear=Front=-1 L) Quieue with single element
3. Ifthe quéue is not empiy and Front= Max- 1, then aiter deleting the element at the front , Front is set
to 0. As shown in given figure
81|

(Flel s IwlslsT T T 1
o 1 2 3 4] L] T 8 FRONT=0

rear I-D Delete this element and set FRONT=0

Algorithm

Dequeue
A dequeus is double -ended-queue where element can be inserted or deleted at either end. It is also known
as head-tail linked list because élements can be added or removed from cither the front (head) or the back

(tail) end.

T T Tl [eJule]l [|
0 1 2 Let=3 4 5 & Rgh=7 8 9
CeT e 1T T T 1 T [& Jn]mnl]
0. Right=1 2 .7 4 -] [Laft=T 8]

Figure 2.3 Double-Ended Queue

Mo element can be inserted or deleted from the middle . In the computer’s memary deque Es in.'lplcm-mled.
using either o circular array or a circular doubly linked list. In a deque, two pointers are maintained, LEFT
and RIGHT , which point to either end of the deque. This type of data structure have a sn‘bzype as Firlbow:-

1. Input restricted deque: In this deque insertions can be done only at one ends, while deletions can be

done from both ends. N)
2. Output restricted deque: In this deque, deletions can be done only at one of the ends while insertions

can be done on both ends.’

Priority Qﬁeue
The priority queue is a data structure having a
ordering, There are two types of priority queue:

collection of elements which are associated with specific

38« Data Structure (Using C/C++)

I. Ascending

2. Descending
Application of Priority queue ;

1. The typical example of priority queue is hMguthinmhewmhﬁP;ﬂr
operating system allocates priority (o jobs. The jobs are placed in the queue and the pos -D:Mﬂn
the jobs in the priority queue determines theior priority. In operating system there are three kinds of
jobs. There are real time jobs , foreground job and background jobs. The of system always
schmhsmcmemlllmejnhsﬁmIfm:hmuﬂmhhmdmﬂmhm&w
jobs. Lastly if no real time or foreground jobs are pending then ing system the
background jobs,

2 In rk ication to manage limited bandwidth for transmission the priority queue is used,
3. In simulation modeling 1o manage the discrete events the priority queue is used.

Multiple Queue :
When we implement a queue using an array , the size of the amay must be known in advance .If the queue
is allocated less space, then frequent overflow condition will be encountered . To deal with this problem, the
eode will have to be modified to reallocate more space for the armay.

If allocate more space for the queue then it will result in wastage of the memory . Thus, there lies a
tradeoff between the frequency of overflow and the space allocated.

S0 a better solution is have a multiple queue or to have more than one queue in the same amay of

sufficient size.

Application of Queue
L Queue are widely uswd as waiting lists for a single shared resource like printerdisk CPU.
2. Used to ransfer data asynchronously(data not necessarily received at same rate are sent) between

two processes (L0 buffiers),

3. Used as buffers on MP3 players and portable CD players, iPod playlist.

4 Queuamusdhﬂpemhswmﬁrmmﬁmw‘mmnmh‘am
system muwnbchumedﬁwmmph‘byammdtkkimm»mhw
immediately before p ding with the current job. :

Very 5

Define Array.

What is linear amay?

State the list the operartions performed over amay.

State down the representing way of amay in memory,

Write down the algorithm of insertion and deletion of data element in array.
r d by two-dimensional

What do you array? k
An arrary int marks|]={99,67,78,56.88,90,34,85), calculate the address of marks[4] if the base

address=1000. s

8 Consider a 20%5 two dimensional wmﬂhhhmm-lmma size of an
é ¢ =2, chmmmdﬁmnfud-m,n-h[lmqmmmuh
stored in row major order,

bl L Y T

23

g, Let ApelS] be an armay of integers such that
Apel0}=2, Aell)S Age2] -3 Agel3)1, Age[4]-7
Show the memory representation of the array and calculate its length _
10. Consider 3 twor dimensional array arr [10][10] which has its base address =1000 and the size of an
- element =2. Now compute the address of the element , marks[8][$] assuming that the elements are stored

in columan major onder.

