Unit-111
Memory Management - Requirements on the primary memory, mapping the address space to
primary memory, dynamic memory for data structures, Memory allocation (Fixed partition Memory

allocation strategy), Dynamic address Relocation, Memory Manger Strategies (Swapping, Virtual Memory,

Shared Memory Multiprocessors). Virtual Memory : Address translation paging, Static and dynamic
paging agorithms.

7. Memory Management

9
v
-3
N3

7.1 Memory Management Requirements
7.2 Memory Management Basics

7.3 Memory Allocation

7.4 Contiguous Allocation Techniques
7.5 Swapping

7.6 Virtual Memory

7.7 Shared Memory Multiprocessors

7.8 Segmentation and Pagin g

7.9 Static Paging Algorithms

7.10 Dynamic Paging Algorithms

ESEEREBBEBIRED

78 Operating Systeq,

3) Starvation. How do we ensare that starvation will mot occur? Thatis, RO G4 W ez
ihat resources will nat always be preempted from the same process”

In a svstem where victim selection is based primarily on cod1 factors. it mov happen thar i,
SAME Process is Alwavs picke a5 a victem. As a resull, this process AT compluics s designagy
sk, @ sralion St et B fealt wath in any practical system, Clearly, We must ensyy,
; %5 can be & weetin” enty a gsmall) finite number of times. The most common
1 kel Lre sunber of rollhacks m the cost factor.

Exercise

Part § (Very Short Answer)

1. What is situation of deadlock?

2. What is a mutual exclusion?

3. What is deadiock avoidance?

4. What is deadlock detection?

S. What do you mean by roll back.

Part Il (Short Answer)

6. .Write in brief the necessary conditions of deadlock
7. Write in brief about deadlock prevention.

8. Write in brief about process’
Part-lll {Long Answer)

9, mmummmm
Iﬂ.E!pllndeldhctptminﬂlfwmﬁﬁms

42

| - Emh

Cchapter

Memory Management

In a multiprogramming compater the operating system resides in part of memory and the rest
is used by multiple processes. The task of subdividing the memory not used by the operating
system among the various processes is called memory management

in this chapter, we discuss various ways 1o manage memory. The memory management
algorithms vary from a primitive bare-machine approach to paging and segmentation strategies.
wmimmmwdm.&hﬁmdam-m
mdhnmi&mmﬂmmmmﬂhmmedﬂpofm
m.mmﬂdlgmﬂpﬂmmumwsumﬂmmmm
closely integrated the hardware and operating system.

Mﬂnnmmndlheregiﬂmwhimlh:prmrmlfmuwonbmmgeﬂmdu
mmmdimﬂxmmmﬁimm‘nﬁmmmm—mﬁms
but none that mdﬂwmm.myimminmmm_muydmb:in;
mwmimmhiumurmdm‘umwaﬁm.Jfﬂnmutm:
hmmw.uwmu:bemﬂl}mbermﬂncmmopcmmm.hgismsmuat
hmmmC?UmmmllymNemmhmmlenfmCPUdmt Most CPUs can
Mimmmmwﬂmﬁmmmmugﬂwmuunmnrmum
npﬂw'nnsperduduiutmsnewmbes:idofwmmemw.nmhismmdwul
mmhnmdnmwhstmﬂuilnmwmmmmqﬂﬁurwcm
dwk.[nmmmwmlrnenbmml.mnmmhmlummm
wﬁnﬂmm:hmimﬂahismlmnhﬁmmiswmﬁmw
of memory accesses.

7.1 Memory Management Requirements

. Mmm_wmmaMimuﬁmd.poinlinmmhulmymideinwﬁws

areas. :)
Prot im-emhpmﬂﬁshwldbemwdlsNMMmbdlmrfemwm
’ e dwmwmhuimnmwy.mtmmmrum#mw,m
mum&duw-ﬁmmmﬂwhrmdymmmuhum
acated to that process.
- :.Im-i .:umionmcehwmmwbcmmkcmﬂmmwumwﬁm
mm:;smwmofmﬁ.wﬂmp‘eﬁanumwﬂmmmm
nhemm.ilisﬂmwwﬂwmmﬂmwmmmmuf

the program

Operating Systg,,

. bosimlomnim.wﬂmﬂy orgenized into medules some of which ge,
mon modifiablc and some of which contain 436 that may be modified. H“"’,"‘““_lhc
operating system organize RAM which is a linear address space to reflect this logicy)
structure”?

® Physical Organization - Cwmnmm}isuﬂﬁzﬁ into & least two levels: main memory
and sccondary memory. The task of moving information between the two levels of memon
should be the systems responsibility (not the programmers).

7.2 Memory Management Basics

& Program must be brought into memary
and placed within a process for il to be
run

& Input queue - collection of processes on
the disk that are waiting to be brought
inko memory 1o run the program.

* MNormally, a process is selected from the
input queve and is brought into the
memory for execution. During execution
of a process, it accesses instruction and
data from the memory.

& Most systems allow a user process to be
loaded in any pant of the memory. This
afffects the addresses that a user program
can access

* LUser programs go through several
befare bemng run i

Addresses may be represented duri

s ring these

* Addresses in the source

program

generally symbolic (variable name) "
* Acompiler typically binds these addresses

s 2

gn::;m)_ ble addresses (in terms of
® The linkage editor or loader

bind
relocatable addresses 1 ab;u;:::

addresses (physical addresses)

Fi :
Rure 7.2 : Memary Management Basic

43

—

Memory Management 81
7.2.1 Loading and Loader

A loader is responsible to place a load module in main memory al some starting address.
here are thigg approaches, which can be used for loading
o Absc Eloading - A given module is always loaded into the same memory location. All
refiererices in the load module must be absolute memery addresses. The address binding
can be done at programming time, compile time or assembly time
Relocatable loading - The loader places a module in any desired location of the main
memory. To make it possible, the compiler ar bler must g relative addre
Dynamic loading - Routine is not loaded until 1t is called resulting in better memory-space
utilization (unused routine is never loaded). It is useful when large amounts of code are
needed to handle infrequently occurring cases. No special support from the operating
system is required implemented through program design The advantage of dynamic loading
isﬂunummdmmmsmmlmmsmﬂdi:wﬁcmmﬁﬂwhmw
amounits of code ane needed 1o handlz infrequently ocCurTing cases, such as error roulines. |
Iuﬂﬁscﬂt.dﬂwﬁnﬂ:wmﬂumqbeInl:ne.lbsponioﬂumirsuud[md |
|

hence loaded) may be much smaller.

7.2.2 Linking and Linker

Thefuuuiunornlirﬁmi:mukeusnwano!lwﬁonul‘objedmodulﬁmpmdmeulold |
module consisting of an integrated se1 of programs and data modules 1o be passed to the loader. In
cach object module, there may be symbolic reference (o location in other modules. The linking can
be done either statically or dynamically.

& Static linking - A linker generally creates asingle load module lhauslb:omtiﬂxpnsjoining

of all the object modules with references properly changed. This s called static

® Dynamic linking - Linking is postponed until execution time All external references an:

not resolved until the CPU executes the extemal call.

Small piece of code is & stub that is used to locate !hcappmpriﬂememoq'#idem Iibnlnry
routine. Stub replaces itself with the address of the routing, and executes the routine. Operating
system needed 1o check if routing is in processes’ meermory address. Dynamic linking 15 particularh
usefiul for libraries.

123 mngqllnmﬂlwmd Data to Memory

Usually, o program resides om a disk as a binary executable ﬁ!e. To be executed, the program
mmmwimmmphmdﬂlhyuum.mm“pnnnmmml
u1mlmpmmbemwdhmﬁn_mtmmmmmmwumn.mmm
on the disk lhlmw.meemcghtmm?nrmulmromwlnmwThe
nnrmalpwumismuHW“mm,‘“'mmqmm”'mm'{"“"“’““"
Memory, As the process i executed, il rcesses instructions and data from memory. Eventually,
the process terminates, and its memory space is declared available,

Bz

Operating 5
_____;H_‘b=

Most systems allow o user process 10 reside
in any part of the physical memory. Thus, slihough
the address space of the computer starts at (0000,
the first address of the user process need not be
00000. This approach affects the addresses that
the user program can use. In most cases, a user
program will go through several steps-some of
which may be optional-before being executed
(Figure 8.3). Addresses may be represented in
different ways during these steps. Addresses in
the source program are gencrally symbolic (such
& count). A compiler will typically bind these
symbolic addr 1 redocatable add (such
as " 14 bytes from the beginning of this madule™)
The linkage editor or loader will in tum bind the

1 e add o addresses (such
a5 74014). Each binding is a mapping from one
address space to another,

Address binding of instructions and data to
memory addresses can happen a1 three different
slages. -

* Compiletime: If memory location known

a prion, absolute code can be generated;
must recompile code if starting location
changes.

* Load time The compiler must generae
re-allocate-able code if memary locasion
i;mkmumpilrﬁmgmﬁml
binding is delayed until load time.,

* Execution time: Binding delaved until
exceution from one memory segmen
maps (eg, bate and limir registers),

7:2.4 Logical vs. Physical Address Space

The concept of a
central to proper memory
L] Losiwrmrmvsencmmhym CPU;

un time if the
t o

Figure 7.2.3 : Memory Management Basic

Process can be moved during its

another. Need hardware support for address

logical address i
Spuuﬂm:smmh,mr . | address space is

also refemmed 1 o vintual address

" ”'-”:‘: address - address seen by the memory unit
The compile-time and hd{hrmwndj“m g
addresses. However, the execution.(i ST dentical logical ang physical
ution-time addresges binding scheme results jn dim-.ringl ical and

44

pemory Management

ical addresses. In this case, we usually refer to the logical address as a virual address. We

#wmmWMmiwmﬁsmmﬂddlwﬂlﬂw

by & prograim is a logical address space; the set of al physical addresses comesponding

o these lopical addresses is a physical sddress space. Thus, in the execution-time address-binding
cherne, the logical and physical address spaces difer

relocation
register
logical L Physical
address address memory
ET: O 14346 4
MMU

Figure 7.2.4 : Address space Memory Management i
i e d .
i yaical Mnﬂummmpﬂmmu@hﬂ-lmw .
mﬁmﬁmmw differ in ion-time address-binding scheme.
7.2.5 Memory Management Unit - (MMU)
MMU i i ical address at run-tme.
'am«lmdmwlhumpswnwwph?mull :
: m.g;kmmmwminmmmMmuanmmm

process at the time it is sent 1o memory. :
5 mumdbylmmmwm;ilmlmmmmw addresses.
user program

7.2.6 Dynamic Loading
.) P it has been necessary for the entire program and all data of a process
In our discussion so far, wecute. The size of a process has thus been limited

10 be in physical memory for the § anb:mmm-spm utilization, we can use dynamic

10 the size of physical memory inve iz ot loaded until it is called. All routines are kept on
boading With dynamic loading. aTou '.m;w is loaded into memory and is executed. When a
routing meedh 1o ol tber rouioe, e i |mmmummmmme
ne Erey :
i or not. IF it has mot, this change.
Then control is passed to the newl

i

|
84 Operating System . mory Management 85

The advantage of dynamic loading is that an unuesd routine is never loaded. This method is
panticularly useful when large amounts of code are needed to handle infrequently occurring cases,
such as emror routines. In this case, although the total program size may be large, the portion thay
is used(and hence loaded) may be much smaller

7.2.7 Dynamic Linking and Shared Library

Some operating systems suppon only static linking, in system language libraries are trested
like any other object modube and are combined by the loader into the binary program image.
Dymamic linking, in contrast, is <imilar o dynamic loading Here, though, linking. rather than loading,
s postponed until execution time. This feature s usually used with system librasies, such as language
subroutine libraries. Without this facility, each program on a system must include a copy of its
language library (or a1 least the routines referenced by the program) in the executable image. This
requirement wasies both disk space and main memory. With dynamic linking, a stub is included in
the image for each library routine reference. The stub is & small picce of code that indicates how
to bocate the appropriate memary-resident library routing or how o load the library if the routine is
not already present. When the stub is execated, it checks to see whether the needed routine is
already in memory. If it is not, the program loads the routine into memory. Either way, the stub
replaces itself with the address of the routine and executes the routine Thus, the next time that
particular code segment is reached, the library routine is executed directly, incurring no cast for
dynamic linking. Under this scheme, all processes that use a language library execute only one
copy of the library code. 3

7.3 Memory Allocation

further, we must discuss the issue of memory mapping

Before di ing memory all
Epatcher loads the

and protection. When the CPU scheduler selects a process for execution, the d
relocation and limit registers with the correct values as pan of the context switch Beciuse every
address generated by the CPU is checked against these registers, we can protect both the operating
system and the other users’ programs and data from being modified by this running process. The
relocation-register scheme provides an effective way 1o allow the operating-sysiem size 1o change
dynamically. This flexibility is desi in many ions. For ple. the operating sysiem
conlains code and buffer space for device drivers. If a device driver [er other OperHing.sysiemy
service] is not commonly used, wee do not mlmlreplhcmdemddmmmmwy,asmm
be able to use that space for other purposes. Such code i sometimes called transient Operating.
system code, it comes and goes as needed. Thus, using this code changes the size orlhcmn-n!
system during program execution. To proteet the operating sysiem code amd data by the yger
processes 5 well as protect user processes from ome another using relocation register and limig

register

7.3.1 Single Partition Allocation 0

memory and user processes are executing in higher
mEmaTY.
Advaniages i

Disadvantages

Operaling
In this scheme Operating system 15 residing in low system o0k

& Ivis simple.
® It is easy to undersiand and use processsy
» It leads to poor ulilization of processor and memorny. i
o Users job is limited to the size of available memory

Free

7.3.2 Multiple-partition Allocation 512 K

ing memory is Figure 7.3.1 : Partition Allocation

O of the simph nods for all

to divide memory into several fixed sueed partitions. There
are two variations of this.

7.3.2.1 Fixed Equal-size Partitions

It divides the main memory into equal number of fixed sized pantitions, operating system occupées
some fixed portion and remaining portion of main memory is available for user processes.

d . .
! ‘f:"t;:.:m whose size is bess than or equal to the partition size can be loaded into any
available panition)
* [isupports multiprogrammng.
Disadvantages B
® Ifa program is too big o fit into a partition use overlay technigue Dﬂ.lﬁmﬂ
® Memory use is ineflicient, i.c., block of data loaded wzuﬂx
inio mmuyma;'hcmalluman the panition. It T
is known as internal fragmentation S
BB K
7.3.2.2 Fixed Variable Size Partitions
I the
i ariable size partitions '-l_rc AN OVErCOme
isadommages prasent n fied eqal size puritioning -
With unequal-size pantitions, there are (W0 ways 10 assign processes
Wpal:]]hims _— For each and cveTy process one queue is present, —
se multiple g - Y g :
each process 1o the sm parti s

a8 shown in the figun below. ASSIER 2 ;
within which 1t will i, by vsing the scheduling quedes, .., when a new

86 : T Operating System
M-swmrntmllwinﬂnqmitisabla:aolhwilhoutmmglhcmmwm

irrespective of other blocks queues.

— T 1T }—-
_— Pk

B0 K

i\\:ﬂ:ﬂ—-— 128K
T 1T }+—

K

512K

732:
Advantages i R
* Minimize wastage of memory,
Disadvantages
* This s¢
unused.
Us:sin;leqm:-muismﬂmdmdymmdy is present for schedul
:] ; quene is it i i
ﬂult:r:rgs_mw m’sll_u. If any block is free even though it ifl'uw lhl:.lfmhmm .
y join instead of waiting for the suitable block size It is depicted in the figure below: g

o5

256 K

N BOK
processel —— 128 K
BEK

|sopﬁmumﬁmlhempimurﬁmﬂumhmuﬂiﬁmmis

512K

e —

Figure 73.2 + (d) Size Partition

46

pemory Managemant 87
Jlsppideis
Advantages
o Itis simple and minimum processing overhead
pisadvantages
o The number of panitions specified at the time of system generation limits the number of
aclive PrOCCSSEs.
o Small jobs do not use panition space efficiently

7.4 Contiguous Allocation Techniques

The main memory must accommodate both the operating system and the vanous user processes.
We therefore need to allocale main memory in the most efficient way possible. This section
explains one common method, contiguous memory allecation

The memory i% usually divided into two p one for the resident operating system and
one for the user processes. We can place the operating system in either low memory of high
memory. The major factor afliecting this decision is the location of the interrupt vector. Since the
intermupt vector is often in low memory, programmers usually plece the operating system in low
memory as well. Thus, in this text, we discuss only the situation in which the operating system
resides in low memory. The development of the other situation is similar

Mow we are ready 1o fum 10 memary allocation. One of the Jest methods for all
memary is to divide memory into several fixed-sized partitions. Each partition may contain exactly
Wprmcss.nus.lh!dqyudfmﬁﬁptwmmm;ishmd by the number of partitions. [n this
multiple partition method, when & partition is fiee, & process is selected from the input quewe and
is boaded ino the free partition. When the process terminates, the partition becomes available for
another process. This method was originally used by the IBM OS/360 operating system (called
MFT}; it is no longer in wse. The method described mext is a generalization of the fixed-partition
scheme (called MVT); it is used primarily in batch environments Many of the weas presented
here are also applicable to & time-sharing envirenment in which pure segmentation is used for
memory management (Secion 8.6). In the vaniable partition scheme, the: operating system keepsa
table indicating which pans of memory ane available and which are occupied. [nitially, all memory
i available fior wser processes and is considered one lasge block of avalable memory, & hole,

enter the sysiem, they are pul into an input quewe. The operating sysiem takes into account the
memory requirements of each process and the smount of available memory space o detern g
s S il . When a peocess is allocated space, it is loaded into memory,
and it can complete for CPU time. When a process terminaies, i relcases its memory which the
operating system may then (il with anoiher process from the inpul qucue.

At any given time, then, we have a list of available block sizes and an input queue. The
operating system can order the inpul qucue according toa scheduling algorithm. Memeory is allocated
10 processes untl, finally, the memony pequirements of the pext process cannol beﬂ.ll!ﬁﬂil ~that is,
1o available block of memory (of ole) is large enough to hold that process. The operating system

a3 Operating System
can then wait until a large enough block is available, or it can skip down the input queus to see
whether the smaller memory requirements of some other process can be met. In general as
mw.mmmmmmwamaﬁmnrmmmmm:
memory. When a process amrives and needs memory, the system searches the set for a hole that
15 large enough for this process. If the hole is too large, it is split into two parts,

limit
register

relocation
register

trap: addressing error ‘-

Figure 7.4 : Contigous Allocaiton

GmmkdlwumwmmﬁmmhuhﬂismummﬂumofmWlmn
prmlnmjnmilmmhbmwmm.wtichislhenplmbmkiuﬂwmnfme&
!ﬂluentwhnleisadjmnlm«hﬁhk;lhmendjuumhnlummwulhmmwmk.
Mlhiapoinﬂnmmmymadmcbutmmmzmmmﬁngrmmmmd
\-hbg:!llmHsmymmmmmcwmmiﬁfwmmﬁawdmm
wititing processes,

mamu-mwmw‘mmd ic al i N
thmhwhwisﬁlmqlmofﬁunfma:‘“m i T B
mwmmm.mﬁmmm.mmm-m i
mtdlusellenlfmhnlﬂhmﬂumqfuihblehnks.

. Fimnammmnmmmﬁﬁsmn.wqmmermm inning
ﬂMthhwuhhwmm:hmﬁm-mmhmﬁhm
mmhmlumumﬁmaﬁummiﬂmm.

. Bﬁlﬂl.Al!ﬂc_lcthmhﬂhnhlhlisbi;w%mmhlhecnlil'e!iﬂ-
uhﬁelﬂnmﬂuﬂhﬂnﬁhﬂ&ynﬁh@nﬂcmﬂﬂhﬂomm

- \\uuﬂl.Mlnm:ﬂtelmbh.&pin.wmmmhmmlinunlmsili:md

47

P

ﬂlﬂ‘lw Management a5

by size. This strategy produces the largest leflover hole, which may be more useful than
the smaller leftover hole from a best-fit approach,

7.5 Swapping

s A process needs o be in the memory 1o be executed. However, a process can be swapped
temporarily out of memory 1o a backing store, and then brought back into memory for
continued execution.

. S'—“ﬂwiﬂshﬂ“bﬁlinsm-lhdisllmm;hmmmdue_cnpdssnrdl
memory images for all users; must provide direct access 10 these memory images.

" Roll out, roll in - swapping variant used for priority-based scheduling algorithms; lower-
priority process is swapped out so higher-priority process can be loaded and executed.

. Ma,'purpawfwnplimiswﬂhlimMﬂhuufwﬁmi;dirqﬂl;mou_ﬂmqu
amount of memary swapped. Note that context switching time in this scheme is quite
i

- Ir?;mnuswapwlpmuu,mrmmh:mnhuili:mplueiridh

. Mﬁodvusiuunfmiaimmlbmﬂonmmymmi.e.umxunmmdwm

For example, 4ssume a multiprogramming environment with a round-robin CPU-sﬁndu::z

algorithm, When a quantum expires, the memory manager will start to swapmnhermprml =
justﬁnishedmdmmpmherpumimﬂwmq:pmﬂulhnm .:ﬂm
meantime, the CPU scheduler will allocate a time slice to some other process in mmum 3
ﬂchprwmﬁnjsbosinmmﬂum.ilwillhsmppﬂd\mh mqlhr process . Ideally, m:rm
manager can swap processes fast enough that some processes will be in memory, ready ;“ .
when the CPU scheduler wints to reschedul ﬂncm.lnaddmnu.meqm:umm m.:r
mmwmmw « Muah i clgeeions hiﬂ“:er\-wioril‘::::;uﬁw:
il ey i jon heduli ms. Ifa
and “;imﬂ:.ugm w’:u sm?wﬁc lower-priority process and then load
he higher-prionty process. .
ﬂm:?hlmwwmﬁnmhlmﬂﬁﬁwm@hwwkm
and continued, This variant of swapping is sometimes called roll out, roll in. Nomnllﬁy.ap_mm
Mhm“pajmﬁllhgmminnm!?ﬂﬂ_lm_lmﬂm m
Thismimisdmwdnuﬂdﬂﬂlﬂh}ﬂm]fb@nglsmymﬂjg o
time, then the process cannol be easily maved to a different los I'r g
bﬁ'hsnﬂ.hum.lheupm:snwhemw:dmmumﬁtm memory space, because
i ted BE .
ﬂlﬂ;m = u:i:;:h;:kinlm mm;mismn_mmc Itlmstbe

Wmsh‘ Hmmmphso\t‘all memory images for all users, and it must provide direct
ml'sg mnmmmmmmamqmwmmﬁdlw
mmim“mmmqmminMWMMmmm.wm

Opﬁmﬂng s.'ﬂhlh | Memory Management a1
20 s User written eror handling routines are used only when an emrer occured in the data or
i compatation,
m;\g e Certain options and features of & program may be used rarely.
process P, e Many tables are assigned a fived amount of address space even though only a small
(1) swap out amount of the table is actually used
P
B (2)swap in A page 0
- | page 1
1
- il ™y
space backing store page 2 L —
main] |
e | EIELE]
Figure 7.5 : Swapping of two processes using a disk as a backing stare, qﬁ% i
CPU scheduler decides to exccute a process, it calls the dispatcher. The dispatcher checks to see = 0ooo
Mmhe:Hunmprminlhtqu:usisinmmqr.Ifilismmdif!hereisnol’mcmm.ry -
region, the dispatcher swaps out a process currently in memory and swaps in the desired process. : 100
I:|h:nmloudansjmn:ndum$mwllomwwwdpmm | I___I D D
7.6 Virtual Memory memory ~ —

In computing, virtual memory is a memary management technique that is implemented using P "
Mb&ﬂmﬂmﬁmllmmmmbﬂm.ﬁmﬁmﬂlmm Ww ey
HlonhysiﬂlddruminmmmmmMﬂmmﬁmnwamwuﬁaw "::.I
a5 3 contiguous address space or collection of contiguous segments. The operating system manages T

Figure 7.6 : Virtual Memory

virtual address spaces and the assignment of real memory to virtual memory. Address translation
hardware in the CPU, often referred to as a

n ' memory management unit or MMLU, automatically | ® The ability to exccute @ program that is enly partially in memory would counter many
translates virtual addresses to physical addresses. Software within the operating system may extend bencits. :
mmlllmhmawmmmegmmemewm Less numiber of IO would be needed to load or swap each user program into rrm'-lw:
m“ﬂwmmmm“ﬂniﬁﬁmmbmmlhemmpum o 3 would no longer be constrained by the amount of physical memory that is
mﬂmﬂ'wﬁﬂf'mmwlmﬁﬂuwm:mmmM\ringlomuw.gu L W'“m A
shared memory space, increased security due o memory isalation, and being able to conceptually could take less physical memory, more programs could be run
use more memory than might be physically available, using the technique of paging. A} {Each :: m:r;,mm, increase in CPLY utilization and throughput.
Virtual m“‘"‘mch“'q"‘“““'h“"h‘hﬂuliﬂnﬂfmMni;hmm.-,ompugly same lime, iy by demand paging. It can also be implemented in a
available in memosy. The main visible advantage of this scheme is that programs can be larger Virtual memory i5 commanly DpHeme can also be used to provide virtual memory.
mman Physical memory. Virtual meamory is the separation of user logical memmory from physica segmentation Sysiea
mEmary, physical

: ; i reeived by users from physical
invalves the separation of logical memary as pe "
i mory 1o be provided fi | m.‘:"" This sepasation sllow's 22 :m:}qﬂuvllwmmm‘:ﬂmmo!
. il B for programmers |- i ical memory is available (Fi ;
mmmﬂyamdhrwm.“mm Followi 2 L Mnnw:‘:i:;nn:ua;?-:n |mlpmﬂqmnmhwmmmm'h‘mm0f

48

g2 Operating System
physical memory available; she can concentrate instead on the problem 1o be programmed.

The virtual address space of a process refiers to the logical for virual) ™% e
view of how a process 15 stored in memory, Typically, this view is that a
process begins at a cerain Jogical address-say, address; say, address 0, |
and exists in contiguous memory, a8 shown in Figure 9.2, Recall from
Chapier 8, though, that in fact physical memary may be organized in page
frames and that the physical page frames assigned to a process may not T

be contiguous. 11 is up 10 the memory management unil (MMU) 1o map heap
logical pages to physical page frames in memory, data
Mote in Frgure, that we allow for the heap to grow upward in memaory code

as it is used for dynamic memory allocation. Similarly, we allow for the (4]
stack to grow downward in memory through successive function calls,

The large blank space (or hole) between the heap and the stack is part of the virtual address
space but will require actual physical pages only if the heap or stack grows,

Virtsal address spaces that include holes are known as sparse address spaces. Using a sparse
address space is beneficial because the holes can be filled as the stack or heap segments grow or
:'funuhmd_xmmlt}-IhMibmﬁesto«mﬂﬂynﬂm:hmdobjm)mﬁnummm

InmumwmiuhﬁwMﬁmpﬁmW.ﬁmmdMEﬂ
wmmhumudbymumemwm;hmemng{&uhns.tqm
leads 1o the following benefiis:

1. System libraries can be shared by several processes through mapping of the shared object
im0 a vinual address space. Although esch process considers the shared libraries to be
morluﬁmmm.mmlmmmnm-uummm
memony are shared by all the processes. Typically, a library is mapped read-only into the
space of each process that is linked with i

3 ﬁmihh—.mwmmmmsh-em.kmﬂlnmmmm
that twe or more p can 1 hrough the use of shased memory. Virteal
mmydlousmwwmanﬂmnfmrymilmmmm
m.%ﬂmﬂﬁswﬁmwmﬁ#ﬁmﬁlﬁdrﬁnwmmwmm
memmmwmurmmmm.mmsmwmrw.

3. Vinual memony can allow pages to be shared during process creati ith fsrkel)
system call thus speeding up process creation. G

7.6.1 Demand Paging
Cmsid:rhw.nmuuhlcmwnﬁm be loaded from disk i memory, One option is 1o

boad the entire program in physical memory a
lhhlw_muhlsmuucmwminmlymﬁuwm

49

Memory Management 93
needed. This technique is known as demand paging and is commonly used in virtual memory
systems. With demand-paged vinual memory, pages are only loaded when they ase dmam_iad
during program execution; pages that are never accessed are thus never loaded into physical
memory. L

|
—
) el
Swap out o] 11 200 3]
% = oy
= e oo
] '12D|3E:4§j15|:|'
P"’g’“"". P swapin ws[7CJieel])
—- (200021 Cle2 230
; | I— ‘I'x.__‘___‘_ . -
[e]
main
RBMOTY
Figure 7.6.1 : Demand paging

demand-paging system is similar 0 a paging system with swapping where processes reside
h:mﬂmmmq(mdbudiﬂ:l When we wan! fo exceule a process, we swap it inlo
memary. Rather than swapping the entire process into memory, however, we use a uzy swapper.
""‘Z!W never swaps a page into memory unless that page will be needed. Since we arc
now viewing a process as a sequence of pages, rather than as one large contiguous address
anflh:tmnmawﬂilmhrﬁnﬂr‘ | A swapper pulates entire pe
mmamismmmwdmmnnindiviflunmﬁofawm.w:musmm.m,
than swapper, in connection with demand paging.

7.7 Shared Memory Multiprocessors

The hardware evolution has reached the point where it becomes gxl:wmely di_ﬁkult w I‘unbeul-
i ormance of superscalar pr by cither exploiting more instruction-leve
m:,ﬁ? Ex r::I]-. or IN:S new semiconductor technologies. The effort 1o increase processor
::rf ' 's":' by exploiting 1LP follows the law of dimmishi.ng returns; new, more complex
i:m'i?-,:n“I 5 |;1d'm¢ml mare in terms of silicon as well as design effort and provide smaller and
mlm p.?:rm,m gains. In addition, aggressive use of speculative caching and execution

g %

24 Operating System

uchm'qu:sinmodemsnpwﬂu‘ﬂmkwpwuum'efﬁciency-mimpommwm mbuh
embedded systems with limited battery capacity and in server systems, where heat dissipation is a
problem of growing importance. The natural solution is to rely on thread-level parallelism (TLP)
rather than ILP 1o further increase the computational power of computer sysiems. The following
fiorms of TLP are currently being used: explicit multithreading, chip-level multiprocessing (CMP),
symmeiric multiprocessing (SMP), asymmetric multipr (ASMP), non-uniform memory
access multiprocessing (NUMA), and clustered multiprocessing. With the exception of clustered
mmulwmmmwmmmmmmmmmm.
shared physical address space. The shared memory organization has three major advantages over
mmmmmmwmrmmmwmmmm
does not have to interfere with computation and because access to shared memory can be
streamlined using hardware caching, shared memory provides an extremely efficient low-latency
high-bandwidth communication mechanism. Second, shared memory provides a natural
communication abstraction well understood by mest developers. Third, the shared memary
arganization allows multithreaded or multi-process applications developed for uni-processors 1o run
on shared-memory multiprocessors with minimal or no modifications. The goal of this report in to
give an overview of issues and tradeoffs involved in memory hierarchy design for shared memory
multiprocessors.

7.8 Segmentation and Paging

Al its very roots virtual addressing is applied one of two ways: either via segmentation of
paging. Segmentation involves the relocation of variable sized segments into the physical address
space. Generally these segments ane contiguous units, and are refermed w in programs by their
segment number and an offset 1o the requested data. Although a segmentation approach can be
mpmmawwinmormwwm,nmmmlm
nsnwd by [1]. Efficient segmentation relies on programs thai are very thoughtfully writtén
for their targes system. Even assuming best case scenanios, segmentation can lead to problems,
External fragmentation is the term coined for pieces of memory between segments, whi
mml@uﬂrmvikymﬁdammofmw.humnmﬁmbyhumnﬂuﬁﬂ
mu’e.Smccmlmpnrdmonmlwhlmedinsinglehrggbamks.itiswwm‘bk
m'hﬁhsplu_ut&dhﬂewlﬂdleoduk_butmbcuﬁlm, Segmentation
mmmm-wmm if segments are not variable-sized, where memory
. uw.swmwm program but is still “reserved” for it. Contrarily, paging
mlmﬂﬁm"?ﬁﬂmmﬂ. in that ils operation tends ko be more aulomatic
bylhem‘::iww-m““nww.mmﬁsam.iso\faﬁmdsium;wapped
offset addressing wmma:x* of the program's control. Instead of iilizing a scgment
ailscets wEEA st 0 it mﬁ;won. Paging uses a linear sequence of virtual
; memony s mecessary. Due 1o this addressing approach,
nen-coMiguous segments, Although some intemal

50

e

Memery Management a5

B et B
fragmentation may still exist due to the fixed size of the pages, the approach virtually eliminates
extemal fragmentation. The advantages of paging over segmentation generally outweigh their
disadvantages.

7.9 Static Paging Algorithms

Page repl takes the following approach, IF no frame is free, we find one that is not
currenly being used and free it. We can free a frame by writing its contents to swap space and
mgingmepqelauttandnllmhetmhlmmindjmcmmwg:is no longer in memory
(Figure 9.10). We can now use the freed frame to hold the page for which the process faulted.
We modify the page-fault service routine to include page replacement:

& Find the location of the desined page on the disk.

+ Find a free frame:

a. If there is a free frame, use it
b. If there is no free frame, use a page-replacement algorithm to select & victim frame.
¢ Write the victim frame to the disk; change the page and frame tables accordingly.

® Read the desired page into the newly freed frame; change the page and frame tables.

» Restan the user process.

Mlpssjnga!guﬁﬂumﬁ:ﬂiuumwuhsicpnliclcs:ai«ch policy, a replacement policy, and
a placement policy. In the case of static paging, [1] describes the process with a shortcut: the page
that has been removed is always replaced by the incoming page; this means that the placement
policy is always fixed. Since we ane also assuming demand paging. the feich policy is also a
mmnl;lhmﬁmkm!\dﬂdlhmbunmumdbyapm fault

Wimawmﬂﬂmhaw:asemuﬁnmwgmumphcedmmmum
\\illedummrumdedaw'n.mmhlonw number of page requests before they are
referenced. This "perfect” scenario is usually used only as a benchmark by which other algorithms
can be judged, and is sefimed to as ither Belady's Optimal Algorithm or Perfect Prediction (PP).
Such a feal cannot be accomplished without full prior knowledge of the reference stream, or a
record of past behavier that is incredibly consistent. Although usually a pipe dream for system
designers, it can be seen in very rare cases, such as large weather prediction programs that carry
out the same operations on consistently sized data.

7.9.1 Random Replacement

On the Mip-side of compleie optimization is the most basic app h to page repl :
simply choosing the victim, of page 1o be removed, at random. Each page frame involved has an
equal chance of being chosen, without taking into consideration the reference stream of locality
peincipals, Duc to its random natse, the behavior of this algorithm is quite obviously, random and
unreliable. With most reference streams this method produces an unacceptable number of page
faults, as well as vietim pages being thrashed unnecessarily, Betier performance can almost always

96 Operating System

be achieved by employing a different algorithm, Most systems stopped experimenting with this
method as early as the 1960's.

7.9.2 First-ln, First-Out (FIFO)

First-in, first-out is as easy 1o implement as Random Replacement, and although iis performance
is equally unreliable or worse, its behavior does follow & predictable pattem. Rather than choosing
a victim page at random, the oldest page (or first-in) is the first to be removed. Conceprually FIFO
to a limited size queue, with items being added 1o the queue a1 the tail. When the queue fills (all of
the physical memary has been allocated), the first page 1o enter is pushed out of head of the
queue. Similar to Random Replacement, FIFO blatantly ignores trends, and although il produces
less page faults, still does pot take advantage of locality trends unless by coincidence as pages
move along the queus,

A modification to FIFO that makes its operation much more useful is First-In Not-Used First-
Out (FINUFO). The oaly modification here is that a single bit is used 1o identify whether or not a
page has been referenced during its time in the FIFO queue. This utility, or referenced bit, is then
used to determine if a page is identified as a victim. If, since it has been fetched, the page has
heenmrueneeduletﬂonu.iuNthmomsel.Mmawmwb:sumedm.dt first 10
mnﬂnmmmbﬁhunmmmbmw&irmuiwwmmumm
& likely occusrence taking locality inte consideration, all of the bits ane reset. In a worst-case
scenand this could cause minor and temporary thrashing, but is generally very effective given its
low cost

* Oldest page in main memory is the one which will be selected for replacement.

L] E:sylnimpimml_l:upa]is-l.:epimmﬂbmmuuilwaddwpmmlbehm

Reference String : 0,2,1,6,4,0,1,0,3,1,2,1
Misses R TET xux

o] 4]]
o] dulu] i, o] OENDESD
—_

] 5] H
¢] gl [&] « B

Fault Rawe = 912 = 0,75
7.9.3 Least Recently Used (LRU)
We have seen that an algorithm must use some kind of behavior prediction if it is 1o be

efﬁfmmdlhmhucmmﬂmmlmmmmewohmﬁﬁﬂ_f

51

memory Management 97

mi:alionofils'“‘uﬂh'\\hmigﬁrﬂictimme:mmkmﬂfM(Lﬂll-llﬁ'iﬂ_ﬁm:f
2)

U was designed to take advantage of *normal” program op E g
:Rw-b:snﬂocpﬁwihmlslnn:lrmubdmInmnflh:vinuﬂmwﬂdm
this means that the majority of code executed will be held in a small number of pages: essentially
ihe algorithm takes advantage of the locality principal.)

s per the previous description of locality, LRU assumes that 2 page recently referenced will
mmliFodyb:mfmmndapinsm.Tbmﬂuﬂi:m’dgxgdnmamhuhumnwn
od'themfcmnc:smm.ahd:wddimceissmd[zl.msd:mmmm-qsbe_al?ﬂ_ﬂ
umm.ﬂncpm'rll:f«nncmn:pmﬁminmenhmm.yﬂmyed:ﬁmdn::enm
mlmmnfapmﬂmhuwbunmﬁmmmmrnmpafm:? one
with the maximum backward distance; if two or more points meet this condition, a page is chosen

L] Iglu.gcwhichhunolhnmundlbrﬂm]unmlimeinminmmmisﬂwwmdlmll

be selected for replacement.) o

. Ewmimm;mnlm.mmmhylmmmtmnm

Reference String : 0,2, 1,6,4,0, 1,0, 3,1, 2,1
Mm tX N MNF KX oW

A e Bl o]
] ol [l el e
B] [[[

Fault Rate = 812 = 067

7.9.4 6.9.3 Least Recently Used (LRU) VL NLOTRE W
. ly Used (L.EL) s¢ a

Ofen confused with LR, Lest L s 8 singe sge s in the case of LRU, un.
has not been mnﬁmmmm"‘hw This frequency is calculated throughout
defines a ﬁ*eqtn'lt-:nd its value can be caleulated in a variety of ways. The most ogmml;ﬁﬂum
refereme stream, ‘s ot the beginning of the page mfw_m. and continnes Mmion
implementation beg ver-increasing interval, Although this is the most ""-“"'”-‘1 -
the frequenCY Or ey of use, it does have some serious drawbacks. ;n.:m Rerrientier
o e achul) il b cxtemely siow (1) Assuming that & L gk bt
OE?||I}' ey inates and i E‘Mw 'wm dlmﬁ‘“ m wency is much less
:':;‘tm i the new locality 1o be immediately replaced since their froq :

| ke

-

"‘-——-_-_

=]

a8 Operating System

than the pages associated with the previous program. Since the context has chnngnd_. and the
pages swapped out will most likely be needed again soon (due to the new program’s principal of
locality), a period of thrashing will likely occur,
& Page with the smallest count is the one which will be selected for replacement
& This algorithm suffers from the situation in which a page is used heavily during the initial
phase of @ process, but then is never used again.

7.10 Dynamic Paging Algorithms

All of the static page replacement algorithms considered have one thing in common: they
assumed that each program is allocated a fixed amount of memory when it begins execution, and
does not request further memory during its lifetime. Although static algorithms will work in this
scenario, they are hardly optimized to handle the ol adjusting 1o page allocation
ﬂmmﬁkmhﬂhwubhns%mammmﬁdlymmmnadinsmhﬁmr
hrgeanduluiﬁyhndlpmmmlnnliriu&peﬁhumhsiaofﬂnmwwﬁms
d:p:mlbeumhaarmeﬁuhmwimeudmmmrqﬁdh«; for Stack Algorithms,
we know that as the memory size is decreased, the number of page faults will increase. Other
static algonthms may become completely unpredictable. Generally speaking, any program can
havve its number of page faults statistically analyzed for a variety of memory allocations. At some
point the rate of increase of the page faults (derivative of the curve) will peak; this point is
mhﬁmwmnﬂummsmnlfhmdhmwlhemmiﬂmm
Mhmpdmﬁmmhlibﬂymmismmﬂmwn Past the point, there is
mﬂlylhhmimbkdup;hmeﬁuummmmhmisﬂnmmeﬂm

Siuaﬁdthﬁsismlyth-ﬁMmmymdh.ﬁdem
is quite dynamic, rmdin;lh:upﬁmlpmﬂhmimmb'eimw‘ﬁﬂ'ml Avariety of methods
must be employed to m:wrmmmmmmmwmm locality
d:ngel: present in complex programs. Dynamic paging algorithms accomplish this by attempting
to predict program memory requi ts, while adjusting available i
Mﬁk#wﬁmﬂiu:ﬁhﬁkmhmm to as “prefetch” paging, and is
v -mnl-_pmm:-du:_sl‘dmmdWummﬁlhﬁdﬁﬁ[whinmﬁmoﬂmo{wm}
#ghwﬂﬁlllsﬁbhhﬁﬁuwMMwi ing the smaller cl "
+# ality sets will be repeated. This idea of a “working set” of localities, ars 1 i
sy ing ﬂwﬂmu ties, and is the basis for most

Exercise

Part 1 (Very Short Answer)

1. What is MMLU?
2. What is 3 Linker®

—

Memory Management 29
3, What is & Loader?

4, What is Demand paging?

part Il (Short Answer)

&, .Write in brief the requirements of memory management.
6. Write in brief about virtual memory.

7. Compare linker and loader

Part Wl (Long Answer)

8. Explain the static paging algorithms in detail with example.
9, Explain virtual memody on detail.

10. Explain fixed and variable partition allocation of memory.

52

