Unit-11
Process Management : Process definition, process control, initializing Operating System, Process
Address Spaces Process Abstraction resource Abstraction and Process Hierarchy. Scheduling
Mechanisms, Partitioning a process into small processes Non-preemptive strategies (first come-first
served, shortest job next, priority scheduling deadline scheduling), Preemptive strategies (Round Robin,
two quesues, multiple level queues). Basic Synchronization principles : Interactive processes coordinating

processes, Semaphores, Shared memory multiprocessors, AND Synchronization, Inter process
communication, inter process messages, mailboxes.

_?‘:“adlucks‘ Resource Status Modeling Handling deadlocks, deadlock detection and resolution deadlock
avol ce.

28-41
3. Process Management
28
3.1 Processes 2
3.2 The Process Model N s
3.3 Process states and Transﬂmns -
3 4 Initialization operating system =
3.5 Process Address Space 2
3.6 Threads -
3.7 Types of 'l"hnm]tii.’1 - 4
ithreading els
gg h[‘;lijtltt;trtf:e lt:n:-:;mf:x:r1 User Level & Kemel Level Thread 40
42-52
4. Scheduling =
4.1 Concepts . _ .
4.2 Preemptive and non Preemptive Scheduling s
4.3 Scheduling Mechanism -
- L] -.67
5. Process Synchronization
5.1 Interactive Process and Coordinating Process :2
5.2 Critical Section Problem ®
5.3 Semaphores *
5.4 Shared Memory Multiprocessor . @
5.5 Classical Problem of Synchronization
5.6 Inter-Process Communication | 63
5.7 Message Passing é4
5.8 Mailboxes 66
6. Deadlock | | 68-78
6.1 System Model .
6.2 Resource-Allocation Graph &
6.3 Deadlock Prevention o
6.4 Deadlock Avoidance o
6.5 Deadlock Detection i

6.6 Deadlock Resolution - 26

L7

Chapter
I 3 Process Management
3.1 Processes

A process is a program in execution. It is somewhat more general term than job. Three major
rstem devel created in timing and synchronization that

lines of compater 53 P .
to the development of the concept of the process. Because multiprogramming, batch processing,
time sharing and real time transaction; the design of system software to co-ordinate the various
activities wmed out 1o be difficult. With many jobs in progress at any one time, each of which
involved numerous stéps to be performed in sequence, it became impassible to analyze all the
possible combinanion of sequences of events. So many emors were detected which were difficult
to diagnose because they needed o be distinguished from application software errors and hardware
errars. To tackle these problems, it is required to monitor and control the various programs executing
on the processor in 4 systematic way,

The concept of process provides the foundation process consisis of the following three

- An&fcuuhkwg:‘m
#® The associated data nesded by the program
* Execution context of program
Execution context includes the information that the Operating System needs to manage the
process and that the processor needs to properly execute the process. .
If two processes A and B exist in a portion of the main memory, each process is recorded in
process list, which is maintained by Operating System. Process index register contain the index in
:o;:‘!_rpm-o:s_sll;to{:npwuswmlrymwllhglhepmhnmmnupuinumd!
nstruction in that process io be executed. Base and limit regi o i
fsslazegog : register defines the region in memory
* The iy policy enforces restrictions concerni i i
_mwmm ng which users have access 1o which
L] Ancnss::ommi:Ismmnmdﬁlhmuluin;ummhlhlwmwhwm
2 rﬂ%ﬁrqguhngmmwm“mmmnb}muwﬁhinﬂumm
manm flow contral : Regulates the flow of data within the system and its delivery 1o
® Scheduling and Ry urce Manage : A key task of the Operatin cm is manage the
:;lm resources available to it (main memory space, Input Wpﬁrsg'ﬂm processors)
1o schedule their use by the various active p . Any 1 allocation and
fﬁedulm#pniwmmmmefulhvdnglhmﬁum! E
= Faimess: ypiﬂuy.mmldlituuptmmlbutmcommm i
5 : ; i for the use of lar
mloh:slmlppmml,rcquaiudfurammm:humumnisi:epa;l:;:"y

17

Process Management 29

"

:D:nrjnbso!‘m same cliss, that is, jobs of similar demands, which are charged the same

= Differential responsivencss: On the other hand, the operaling system may need to
discriminate between different classes of jobs with different su'svi;pz’mqmrcn-:cnu. The
operating system should attempd to make allocation and scheduling decisions 1o meet the
total set of requirements. The operating system should also view these decisions dynamically,
For example, il a process is waiting for the use of an Input Cuiput device, the operating
system may wish to schedule that process for execution a5 s0on as possible to free up the
device for later demands from other processes

Efficiency : Within the constraints of faimess and efficiency, the operating system should
attempt to throughput, minimize resp time, and in the case of time sharing,

accommodate as many users as possible

3.2 _'I'la Process Model

Even though in actuality there are many processes running & once, the OS gives each process
the illusion that it is running alone. .

® Virtual time : The time used by just the processes. Virual ime progresses at a rate
independent of other processes. Actusally, this is false, the virual time is typically incremented
a linle during systems calls used for process switching, so if there are more other processors
more *"overhead” virtual time occurs.

* Virtual memory : The memory as viewed by the process. Each process iypically belicves
it has & contigueous chunk of memory starting at location zero. Of course this can't be true
of all processes (or they would be using the same memory) and in modern systems it is
actually true of no processes (the memory assigned is not contiguous and does not include
location zera).

Think of the individual modules that are input to the linker. Each numbers its addresses
from zero; the linker eventually translates these relative addresses into absolute addresses.
That is the linker provides to the assembler a virtual memery in which addresses start at
1o,
Virtual time and virtual memory are examples of abstractions provided by the operating system
10 the user processes so that the Iatter *sees” a mare pleasant virtual machine than actually exists.

Process Hierarchies

Modem general purpose operafing systems permit @ user to create and destroy processes.
In unix this is done by the fork system call, which creates a child process, and the exit
system call, which terminates the current process.
Afier a fork both parent and child keep running (indeed they have the same program text)
and each can fork off other processes
A process tree results: The root of the tree 15 a special process created by the 08 duning

stariup.
s A ean choose to want for children to terminate. For example, if C issued a wait()

process
system call it would block until G fimshed.

-

» Operatng Syston

Old or primitive operating system like MS-DOS are not multiprogrammed <o when one process

starts another, the first process is antomatically blocked and waits until the second is finished.

aforksband

bforks d, e and £

cforks g

d forks h

b forks i
Figure 3.2 : Fork System Call

3.3 Process stales and Transitions

Medium Term
Scheduling

Unblock is done by another task (a.k.a wakeup, release, allocate, V)
Block a.k.a sleep request, P
Figure 3.2 : Process Transition

—

18

Process Management a1

Process can have one of the following fives states a time-
L. Create : The process is being created.
2. Ready : The process is waiting to be assigned 1o a processor. Ready processes are

waiting 1o have the processor allocated 1o them by the operating system so that they can
sum.

3. Running : Process instruction are being exccuted
4. Waiting 1 The process is waiting for some event to occur
5. Terminated : The process has finished execution
The above diagram contains a great deal of information
* Consider a running process P that issues an Input Outpul request
¢ The process blocks
© At some later point, a disk interrupt occurs and the driver detects that s request is
satisfied.
o P isunblocked, i.e. is moved from blocked to ready
© Al some later time the operating system looks for a ready job 10 run and picks P,
* A preemplive scheduler has the dotted line presmpt;
A non-preempiive scheduler doesn't.
® The number of processes changes only for two arcs: create and terminate
® Suspend and resume are medium term scheduling
o Done on a longer time scale.
o Involves memory management as well.
o Sometimes called two level scheduling.

3.3.1 Process Control Block Poimter I Process state

For each process there is a Process Control Block, PCR,

which stores the following (types of) process-specific information Process number
(Specific details may vary from system to system), A process T
control block or PCE is data on strueture (a table | that holds Progrm coumser
information about a process. Registers
[Each process contains the process control block (PCE). PCB .
is the data structure used by the operating system. Operating Memory limits

system groups all information that needs about particular process.
Fig. shows the process comtrol block.
1. Pointer : Pointer points to another process control block.
Pointer is used for maintaining the scheduling list.
2. Process State : Process state may be new, ready, running,
waiting and s0 on Figure 3.3.1 : Process control
block (PCB)

Listof open files

3z Operating System,
3. Program Counter : It indicates the address of the next instruction 1o be executed for thjg
process. Saved and resiored when swapping processes in and out of the CPUL
4. CPU register: Ii indicmes general purpose register, stack pointers, index registers ang
accumulator's etc. number of register and type of register totally depends upon the compuiey
architecture.
5. Memory Management Information : This information may include the value of hase

and limit register. This information is useful i
st is fior de-allocating the memory when the process

3.4 Initialization operating system

Initialization is the p of locating and using the defined values for variable data i
ng i that
m hyammﬁ=nﬂe. &N operating system of application program is imre’;
= |uﬁ|m=aion. ues that determine certain aspects of how the system or program
In many general computing devices, this read only BIDS control
! 1 oes memory defines o
nc:lme cartridge afier doing some preliminary tests to make sure the machinery is :nm:&ﬁcmml
other machines like the PC and Mac, BIOS calls a wility from read ool a1
e y memory and lets that
1. Power On self Test
2. Boot Sector
3. Kemel Initizlization
4. File System Initialization
5
6,
1.

Plug and Flay
Hot Socketing

Power On self Test : The POST, When you tum on or
POST routine. The POST routine determines) e oL & COMpULE, it begins o
ﬂ*;ﬂ hﬂf quired hardware co , such as the keyboard. Hmory nd verifies

er the computer runs its POST routine, cach adapter i ie i
(BIOS) runs its own POST routine. The computer and adm“u:‘: m}m""‘“w system
what appears on the screen during POST processing. uicturers desermine

2. Boot Sector : A boot sector or boot block is a region of i

dise, or other data storage device that contains machine code 10 Lwh::; foppy disk, optical
memory (RAM) by & computer syster's buili-in firmware, The of :W'
allow the boot process of a computer to Joad a program {wsually, but noy Boot secior s 1
system) stored on the same stoage device. The location and size of the hgy " OPeraling
comesponding to a logical disk sector) is specified by the design of the compuyi SECUOr (perhaps
3. Kernel Initialization : Once the kemel is fully loaded, the next step in jrr ™
set the kemel parameters and options, and add any modules that have bees
set-up file. Once the kernel is fully initialized it takes over control of the com
initialization with the file-systems and processes e

19

Process Management 33

d. File System Initialization : The kernel starts up the processes, and loads the file-systems.
The main file-system then includes initialization files, which can be used to set up the operating
sysiems environment, and initialize all the services, dasmons, and applications.,

5, Plug and Play : Plug and Play (PnP) is 2 capability developed by Microsofl for its Windows
95 and later operating systems that gives users the ability to plug a device into a computer and
have the computer recognize that the device is there. Plug and Play (PnP) is a capability developed
Ty Microsoft for its Windows 95 and later operating systems that gives users the ability o plug a
device into a computer and have the computer recognize that the device is there. The user doesnt
have to tell the computer. In many earlier computer systems, the user was required to explicitly tell
the operating system when & new device had been added. Microsoft made Plug and play a selling
point for its Windows operating systems. A similar capability had long been built into Macintosh
compulErs.

6. Hot Socketing : A further extension of this concept was developed for the Universal
Serial Bus, which allows devices to be hot socketed, of installed while the computer is running.
The USB bus contacts the new device and leams from it the necessary information to match it 1o
a driver. This information gets put into the dotabase, and whenever that device is again plugged in,
the same driver is found for it. When the device is unsocketted, the driver shuts itself down and
removes itselfl from the list of active devices. It ean do this because it can monitor the USB
controller to make sure its device is still atached.

3.5 Process Address Space

"Memory " looked a1 how the kemel manages physical memory. In addition to
mmngnmm,mmummwwthmmmm
of memory given 1o each user-space process on the system. Limux is a virual memory operating
sysum.mdmuslhemmufmmmiswmmmwmu}:mm.%m
individual process, the view is as if it alone has full access 1o the system's physical memory. More
hmﬂy.mmmmnfmaﬂmmmhmhhrpuihmphﬁiul.mm
This chapter discusses how the kemel manages the process address space.

The process address space consists of the linear address range presented 1o each process
and, more importantly, the addresses within this space that the process is allowed to use Eac’
process is ﬁvmaﬂu]!-mﬁ-l&lﬁd:mspu.mmem'u depending on the architectun
The term “Nat” describes the fact that the address space exists in a single range. (As an examp
2 32-bil address space extends from the address 0 to 420496729.) Some operaling Systems provie
& segmented address space, with addresses existing not in a single linear range, but instead in
multiple segments. Modem virtual memory operating systems generally have a flag memory model
and not a segmented one. Normally, this flat address space is unique to each process. A memory
address in one p.mssﬂdmspwcldls pothing of that memory address in mh:rwm
address space. Both processes can have different dasa at the same address in their respective
mmmmimhmmdﬁmmm:m”mlth
We know these processes as threads. !)

A memaory address is 8 given value within |headdmssgﬁ,mhud0‘.flmﬂ.lmlspmuulu
value identifics @ specific byte in a process's 32-bit address space. The interesting part of the

Operating Systg,,
- 0 THNO0, ik the proces
Mmmhmeimdwfmmﬂdmﬁ.iuhﬂm;lmm' mnm
has permission 1o access. These intervals of legal addresses ar¢ uimaddumﬁi _p“‘ﬂi.
through the kemel, can dynamically add and femove memory anas pres sn‘mem
The process ean access & memory address only in & valid ""‘"““Tm m"'ﬂ“"'m’ ad
associated permissions, such as readable, wri:::h. -:;l ﬁ:ﬁ& gl
must respect. [Fa process accesses a memory address | memory Bocesiey
2 valid vea in an fnvalid manner, the kemel Kills the process wilh the dreaded “Segmentation
Fault” message.

B4 GB memory of max
supportby []

o =

Process address space/3g switch

Eernel mode
lddreupm User mode
1GB | 16GB u 2G8

Figure 3.5 : Process address space

All 32-bit applications have a 4-gigabye (GB) process add _

map a maximum of 4 GB of memory). Microsoft Windaws '.i’: space (32-bit Ndl'ﬁﬁ;:

with access to 2 GB of process address space, wiﬁmhwmﬂa:“ asmm provide gﬁ:};ﬂw
space, All threads owned by an application share the m“"‘“ﬂcﬁmmﬂ::;“

20

Process Management -

mﬂmirliﬂslzﬁﬂmmfl:‘ndfwl]‘nnp:m'ns:wmtn]sutmashmdmnﬁ:mld:msm}
ﬁl ope;l;ng s_ysbe_md‘ad;::u starting with Windows 2000 Server, including Windows Server 2003,

Ve it Limi swilch that can provide applications with access to 3 GB of]
limiting the kemel mode address W‘I?J GB. b

This feature will be removed in the next version of Microsoft SOL Server. Do not use this
ﬁunuu_?kn:wdwdw wark, and modify applications that cusrently use this feature as soon
as possible,

Adddress Windowing Extensions (AWE) extend the capabilities of 32-bit applications by allowing
access 1o as much physical memory as the operating system supports. AWE accomplishes this by
mapping a subset of up 10 64 GB ino the user address space. Mapping between the applicati
buffer pool and AWE-mapped memory is handled through manipulation of the Windows virtual
memory tables.

To enable support for 3 GB of user mode process space, you must add the Jgh parameter to
the boot.ini file and reboot the computer, allowing the /3gbparameter to take effect Sening this
parameter allows user application threads io address 3 GB of process address space, and reserves
1 GB of process address space for the operating system

3.6 Threads

Athread is a basic unit of CPU wtilization, consisting of a progr
set of registers, (and a thread ID.)

Traditional (heavyweight) processes have a single thread of control - There is one program
counter, and one sequence of instructions that can be carmed out &t any given time

Asshown in Figure, multi-threaded applications have multiple threads within a single process,
each having their own program counter, stack and set of registers, but sharing common
code, data, and cerain structures such as open files.

'Iman_Idnar'Iﬁlnsr 1 code | dara [s |1
registers |suu:t| ["“"’“ﬂl

|sm-l: Hslxk|[su:kl

counter, a stack, and a

[registers] || rcgisﬁ:rsj

Figure 3.6 : - Single-threaded and multithreaded processes

Operating Systey,

38 e Process Management 37
Differe between Frocess am red
nee 3.7 Types of Thread
3y - Thread . Threads are implemented in following two ways
! ® User Level Threads - User managed threads
I : - T —— is light weight taking lesser ® Kemel I.evelThmd&—Opgmin,g System managed threads acting on kemel, an operating
intensive. resources than a process. | S
User Level Threads

Process switching needs interaction with | Theead switching does not need to

operating system. interact with operating system, In this case, application manages thread management kemel is not aware of the existence of

e = thrulsThclhrudlimymm‘nswdefnmmingmmyingmm.&rpm‘ugm
n multiple processing environments eac i mwmm.mmudulin;ﬂnedmmmrwuﬁngwmm thread
3| process executes the same code but has it [A hreads ¢an share same sct of open contexts. The application begins with a single thread and begins running in that thread.

own memory and file resources. ; e

If one process is blocked then no other While one thread is blocked and
4 process can execute until the first process | waiting, second thread in the same

is unblocked. task can fun.
5 Multiple processes without using threads Multiple threaded processes wse fewer
USE MOME feSOurces. FCSOUrces.
In multiple processes each process One theead can read, write or change
° operates independently of the others. another thread’s data.
There are four major categorics of benefits 1o multi-threading: e s Thrsed Uiy
It Rmmm-ﬂmlhmdmmﬁuw:ummmmmnbmw Kernel Space

or slowed down doing intensive calculations.

2. Resource sharing - By default threads share common code, data, and ——
which allows multiple tasks to be performed simultancously in a single ,;h,;r::m

3. Economy - Creating and managing threads (and context switches between them) is

much faster than performing the same tsks for process
R Frices 5 2 h_ Figure 3.7 : User level and Kernel level threads
4. Scalability, i.e. Utilization of multiprocessor architectures - A single ¢ - ADVANTAGES
“BUJ y z ircaded process
e L. et Mo ey be avaiable, whereas the execution of a ® Thread switching does not require Kemel mode privileges.

multi-threaded application may be split amongst available !
threaded processes can still benefit from multi.prog m { Mote that single
multiple processes contending for the CPU, i when the load 3 ures mimmm

® User level thread can run on any operating system
* Scheduling can be application specific in the user level thread.

b il ® User level threads are fast to create and manage
DISADVANTAGES
® In a typical operating system, most system calls are blocking.
® Multithreaded application cannot take advantage of multip ing.
s _.———-_'_-_-__‘ — e —

21

38 UP‘"‘“"B S?Wm
Kernel Level Threads

In this case. thread management done by the Kemel. There is no thread management code ip
the application area Kernel threads are supported directly by the operating system. Any application
can be programmed 1o be multithreaded. All of the threads within an application are Supported
within a single process.

The Kernel maintains context information for the process as a whole and for individuals threads
within the process. Scheduling by the Kemel is done on a thread basis. The Kemel performs
thread creation, scheduling and management in Kemel space. Kemel threads are generally shower
fo create and manage than the user threads,

ADVANTAGES

* Kemel can simultancously schedule multiple threads from the same process on multiple
processes,

If one thread in a process is blocked, the Kemel can schedule another thread of the same
process.

® Kemel routines themselves can multithreaded,
DISADVANTAGES

& Kemel threads arc generally slower to create and manage than the user threads.

* Transfer of control from one thread to another within same
switch to the Kemel.

Process requires a mode

3.8 Multithreading Models

Some eperating system provide 2 combined user level thread and Kemel level thread facility.
Solaris is a good example of this combined approach, In a combined system, multiple threads
within the same application can run in parallel on multiple processors and a blocking system eal]
need not block the entire process. Multithreading models are three types

® Many to many relationship.

* Many to one relationship.

One to one relationship.

3.8.1 Many to Many Model

In this model, many user level threads multiplexes to the Kemel thread of smaller o equal
numbers. The number of Kemel threads may be specific to either a paricular pplication g &
panticular machine.

Following diagram shows the many to many model. In this model, developers can
many usér threads as y and the cormesp
multiprocessor.

""Kmllhmdtmmhmkkm:

22

process Management

e User Level Thigads

| i
%1—— KemnelLevel Threads

Figure 3.8.1 : Many to Many Model
Many to One Model

Many to one model maps many user level threads to one Kernei level thread. Thread
mmmnlisdwinmm.Vﬂuwm:mwﬁumml.hmﬁum
will be blocks. Only ane thread can acoess the Kemel at a time,so multiple threads are unable to
run in parallel on multiprocessors.

If the user level thread lib are imple d in the operating system in such a way that
system does not support them then Kernel threads use the many to one relationship modes.

= User Level Threads

e Kermiel Level Thread

C

p_%." 3.8.2 : Many (o One Model

40 Cperating sﬂm
3.8.3 One to One Model

There is one to one relationship of user level thread to the kemel level thread This mode
provides mose concurrency than the many to one model. It also another thread 10 nun when 5
thread makes a blocking system call, It support multiple thread to execute in parallel gp

microprocessors, Disadvantage of this model is that creating user thread requires the comesponding |

Kemel thread. 0872, windows NT and windows 2000 use one to one relationship model,

——— User Level Threads

e Kernellevel Threads

B

Figure 3.8.2 : One to One Model

3.9 Difference between User Level & Kernel Level Thread

S.N.| User Level Threads Kernel Level Thiead

1 | Userlevel threads are faster to create and | Kemel level threads are skower 1]

create and manage.

implementation thread at the raty Ml SUPPOMS Creation
2 !ﬁerhm?ﬂlmswa ok %Im of

3 | Userlevel thread & generic and can run on Kemlh\clurudm-——-

any operating system. operating system,
4 mrrg;ga am:mmém take 'irizilﬁlnm:ﬂs Mmhusnnh

—

23

Process Management

41

Exercise

Part | (Very Short Answer)
1. What is a thread?

2. Write madmugesofmulmmdjng
3. What is a PCB?

4. What are different process states.
Part Il (Short Answer)

1. Differentiate between a program and a process.

2. Give any three differences between a process and a thread.
3. What are the reasons of process suspension?

4. Mmuelhel‘elmmnrmmwnn

Part Ill (Long Answer)

1. Explain the concepl of process.
2. Compafe user level and kemel level threads.

Chapter
&4 Scheduling

—————_________————_——-‘__-___"‘

CPU scheduling is the basis of multi-programmed operating sysiems. 51""""‘"-"‘“‘@ the CPy
among processes, the operating system can make the computer more productive, In this chapier,
we introduce basic CPU-scheduling concepts and present several CPU-scheduling algorithms. We
also consider the problem of selecting an algorithm for 3 panicular system.

In Chapter 3. we introduced threads to the process model. On operating systems that suppon
them. it is kernel-level threads-not processes-that are in fact being scheduled by the operating
system. However, the terms process scheduling and thread scheduling are often used
imerchangeably. In this chapter, we use process scheduling when discussing peneral scheduling
concepts and thread scheduling to refer to thread-specific ideas.

4.1 Concepts

In a single-processor system, only one process can run at :
a time; any others must wait until the CPU is free and can be Load store

rescheduled. The objective of multiprogramming is to have add store » CPUI busst
some process running at all nimes. 1o maximize CPU utilization, read from file |
The idea is relatively simple. A process is executed until it ' L 1) buarst

must wail, typically for the completion of some Input Cutput

store increment ,]

SCPL burst

request. In a simple computer system, the CPU then just sits jp 4oy
idle. Al this wanting time is wasted; no useful wark is write 1o file
lished. With mulis ing. we iy to use this lime

productively. Several processes are kept in memory al one ks
time. store

When one pracess has 1o wait, the eperating system takes :‘:dm S
mcmawrmmumudsimmccPUhnm .ﬁm‘ e
process. This pattern continues. Every time one process has |-I.n'0htl'5t
to wait, another process can ke over use of the CPU. H

Scheduling of this kind is a fundamental npemjnm
function, Almost all computer resources ase seheduled hef: ;
the primary computer resources. Thus, its scheduling ismox: The CPU is, :'::':::nm o

4.1.1 CPU-/0 Burst Cycle

The success of CPU scheduling depends on an ghge,,
execution consists of a cycle of CPU execution and 1y

ed propenty of processes: procest

24

li
Scheduling =

two stites. Process execution begins with a CPU burst. That is followed by an Input Output burst,
which is followed by another CPU burst, then another Input Output w::,ym :m. Eventizally,
the final CPU burst ends with a system request 1o terminate execution.

The durations of CPU bursts have been mexsured extensively, Although they vary greatly
from process to process and from compater to computel - they tend to have a frequency curve.
The curve is generally characierized as exponential or hyper-exponential, with 4 lange number of
short CPU bursts and a small number of long CPU barsts, An Input Ouiput-bound program typically
has many short CPU bursis. A CPU-bound program might have a few long CPU bursts.

4.1.2 CPU Scheduler

‘Whenever the CPU becomes idle, the operating system must select one of the processes in
the ready queue to be executed. The selection process is camied out by the short-term scheduler
(or CPU scheduler). The scheduler selects a process from the processes in memory that are
ready 1o execute and allocates the CPLI 1o that process.)

Nonﬂmw:mnd}'qmisnulnmmhnﬁm-h,ﬁm-mntF[FO}qm.Asmsh;jlsur
when we consider the vanious scheduling algonithms, a ready queue can be-implemerited as a
FIFC queue, a prionity queuc, a tree, or simply an unordered linked list. Conceptually, howeve]~
all the processes in the ready queue are lined up waiting for a chance to run on the CPU. The
reconds in the quewes are generally process control blocks (PCBs) of the processes.

In a complex operating system three types of schedulers :

l. Long-erm scheduler

2. Shortterm scheduler

3. Mediam-term scheduler

Compansion between scheduler

5.No. ferm scheduker Short term Scheduler | Medinm term Scheduler
I. ||:ui‘55Mr Ti & 2 CPU scheduler It & a process SWappag
scheduler
2 | Speed & lesser than short | Speed & fastest among Speed & n between both
term scheduler other two short & Long term
scheduler
.| Tt controls the degree of | 1t provides kesser control Tt reduce the degree of
multi programming over degree of multi multi programming
L]

4.2 Preemptive and non Preemptive Scheduling

CPU.scheduling decisions may take place under the following four circumstances:

1. When o process switches from the running state 10 the waiting statc (for example, o the
3 m"nrmmmqmwmmﬁmufﬁlmummnrmﬂlkﬂhm

processes)

Operating Systap,

2. When a process switches from the runming 4aie to the ready stale (for cxomple, Whea sy
IRLCITUP OoCairs i
3 When a process switches from the wainng state to the ready state (for example, o
completion of 1 0)

4. When a process terminates B .

For situations | and 4, there 1 no choice in tems of scheduling. A new process (if one exists
in the readv queue) must be selocted for evecution There i a choice, however, for situations 3
and 3

When scheduling takes place only under corcumetances | and 4, we say that the scheduling
scheme 15 nos-procmpisve of cooperalive; otherwise, il 1S preemplive

Under noa-peeemptive schoduling. once the CPU has been allocated to a process, the process
keeps the CPU unnl 1 relexses the CPU either by termunaning or by swiiching to the waiting stue
This scheduling method was used by Microsoft Windows 3 x. Windows 95 intreduced preemplive
scheduling and 20 subsequent versions of Windows aperating systems have used preemptive
schadyling

The Mac OS X operating system for the Macintosh also uses preemptive scheduling; previous
versions of the Macmiosh operating system relied on cooperative scheduling Cooperative scheduling
is the only method that can be used on cemain hardware platforms, because it does not require the
special hasdware (for example, 2 timer) neaded for preemplive scheduling.

Unfostunately, precmptive scheduling incurs a cost associated with access to shared data
Consader the case of two processes that share data thmnswrlgﬁumhismpid

44

20 INCONSISIEN it o
Comparis on between Preemptive and Non Preempiive seheduling
S.No. | Pree mptive Non Preg ~
- ! mptive
1 A scheduling decepline 5 preempine, f | A ing di P preempt

the CPL can be tzkenaway froma procesy f once a p&a?lli";;mnh CPHI?
after bemg allacated the CPU cannot be takenaway from that)

process

Hgher praoeey jobs ate processed belore Shor T ;
the krwer priorey joln mlﬂmmmbyhr‘e”nh

If the CPL ks been allocated 1o conam
process, 8 can be sratched from ths
process any teme ether due to time
LONSUam of duc Lo praor gy reason

It s costhy a3 compared 10 non Preemptre
schedulmg

4.3 Scheduling Mechanism

L&

Once the allscated o a
Process, the process keeps the CPU until it
rekease the CPU eighey by termmating or by
10 the wait

Diﬂ%mCPUvschaduhngdgmmmhntdmnmmm and the choice of particulas
: ce of a

25

Scheduling 45

algorithm may favor one class of processes over another In choosing which algonthm o use in a
particular situntion, we must consider the properties of the vanous algonthms

Many critetia have been suggested for companng CPU-scheduling algorithms Which
charactenisics are used for companzon can make a substansial difference in which algonihm is
judged to be best. The entena include the following

& CPU utilization : We want 1o keep the CPU as busy a3 possible Conceptually, CPU
utilization can range from 0 to 100 percent. In a real system, it should fange from 40 percent {for
a lightly loaded system) 1o %0 percent (for a heavily used system)

® Throughput : If the CPU 15 busy executing processes, then work is being done. One
measure of work is the number of processes that are completed per time unit, called throughput
For long processes, this rate may be onc process per hour, for short transactions. it may be len
processes per second

® Turnaround time. : From the point of view of a particular process. the important criterion
is how long it takes to execute that process. The interval from the time of submission of 2 process
1o the time of completion is the tumarcund time. Turnaround time is the sum of the pemods spent
waiting to get into memory, waiting in the ready queue. executing on the CPL and domg LD

& Waiting time : The CPU-scheduling algorithm does not affect the amount of ime duning
which a process exceutes or does 10, it affects only the anl ount of time that a process spends
waiting in the ready queve. Waiting time is the sum of the periods spent waiting i the ready
queue,

* Response fime : In an intersctive system, tumaround time may not be the best criterion.
Often, a process can produce some output fairly early and can continue compuiing mew resulls
while previous resulis are being output 10 the user Thus, another measure is the tme from the
submission of a request until the first response is produced. This measere, called fEsponse ime, is
the since it takes 1o stant responding. not the time it takes 1o output the response. The tumaround
time is generally limited by the speed of the output device

It is desirable to maximize CPU utilization and threughput and o minimize rumaround time,
wailing time, and response time. In most cases, we opimize the average measure. However,
under some circumstances, it is desirable 1o optimize the minimum of masimum values rather than
the average. For example, 1o gearantes that all users get good service, we may wanl 1o minimize
the maximum response time

Investigators have suggested that, for interucnive systems (such a8 imesharing systems), it is
more important to minimize the vanance in the response nme than to minimize the average response
time. A system with reasonable and predictable response time may be considered more desirable
than a system that is faster on the average but s haghly vanable. Howewvel - linle work has been
done on CPU-scheduling algonthms that mimmize vanance

As we discuss vanous CPU-scheduhing algenthms in the following section, we illustrate their
Operation, An accurate illustration should involve many processes, each a sequence of several
hundred CPU bursts and Input Output bursts. For simplicity, though, we mnﬁerpnly one CPU
burst (in milliseconds) per process in our examples Our measure of companson is the average

wating time

&8 Operating System
4.3.1 First-Come, First-Served Scheduling
i i sthm i FCFS) scheduli

By far the simplest CPU-scheduling algorithm is the first-come, first-served (ng
algon}lulm With this scheme, the process that requests the CPU first is allocated the CPU firs.
The implementation of the FCFS policy is easily managed with a FIFO queue. When @ process
enters the ready quewe, its PCB is linked onto the tail of the queve.

Whe.nlhe(‘l’Uisﬁu.ilisallocu‘edlnlhcprmatt}mlﬁduﬂhqluﬂ!. Tlienl.mrling
process is then removed from the quece. The eode for FCFS scheduling is smTpl:llo write and
underseand, On the negative side, the average wailing time under the FCFS policy is often quite
long. Consider the following set of processes that arrive i time 0, with the length of the CPU
burst given in milliseconds:

Process Burst Time

Fl X
P2 3
P3 3

IT the processes ammive in the order P1, P2, P3, and are served in FCFS order. The waiting
time is 0 milliseconds for process P1, 24 milliseconds for process P2 , and 27 milliseconds for
process P3 . Thus, the average waiting time is (0 + 24 + 27)3 = 17 ncilliscconds. If the processes
amive in the order P2, P3 | P1, However.

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is substantial,
Thus, the average waiting time under an FCFS policy is generally not minimal and may vary
substantially if the processes CPU burst times vary greatly,

In additi ider the perf of FCF5 in a dynamic siuation. Assume we
hmePU-MmMthI&mmlibmm
around the system, the following scenario may result,

The CPU-bound process will get and hold the CPU. During this time, all the other processes
will finish their 1'0 and will move into the ready queue, waiting for the CPU While the processes
wail in the ready queue, the L0 devices are idle. Eventually, the CPU-bound procegs inishes ils
CPU burst and moves to an mhﬁu.AIIWInNWMMmM

CPU bursts, execute quickly and move back to the L0 queues.

Allhispoinnﬂul:?u:i&id]c.mcmmprmwillmenmmmm“y
queuemdhﬂhwddncw.ﬁwn,ulmwummmdupw:in;mkm s
until the CPU-bound process is done. There is a convoy effiect as all Ihﬂhamwzl for
the one big process to get off the CPUL This effiect resulis in lower CPU and devige utilization
than might be possible if the shorter processes were allowed to go first

Mote also that the FCFS scheduling algorithm is non-preemptive. Once the Cpyy Bas bee
nl.ron:udmupm:ms,mumskmlkCPUunﬁlilmkmﬂnmmcimwm. men
or by requesting /0. The FCFS algorithm is thus particulasly troublesome for time-shariy, N8
where it is important that cach user get a share of the CPU at regular intervalg ‘m“‘v
disastrous 1o allow one process o keep the CPU for an extended period. be

26

Scheduling ! 47
4.3.2 Shortest Job Next Scheduling

A dilferent appeoach to CPU scheduling is the shortest-job-first (SJF) scheduling algorithm.
This algorithm associates with each process the lengih of the process's next CPU burst, When the
CPU is available, it is assigned to the process that has the smallest next CPU burst If the next
CPU bursis of two processes are the same, FCFS scheduling is used 1o break the tie. Note that a
mire appropriale term for this scheduling method would be the shortest-rext-CPU-burst algorithm,
because scheduling depends on the length of the next CPU burst of a peocess, rather than its total
length. We use the term SJF because m.ost people and textbooks use this term to refer to this type
of scheduling. As an example of SJF scheduling, consider the following set of processes, with the
length of the CPU burst given in milliseconds:

Process Burst Time
Fl]
P2]
P3 7
P4 3

The waiting time is 3 milliscconds for process P1, 16 milliseconds for process P2, 9 milliseconds
for process B3, and 0 milliseconds for process P4 . Thus, the average waiting time iz (3 + 16 +9
+ 0 14= 7 milliseconds. By comparison, if we were using the FCFS scheduling scheme, the
average waiting time would be 10,25 millissconds.

The SIF scheduling algorithm is provably optimal, in that it gives the minimum average waiting
time for a given set of processes. Moving a short process before long one decrease the wiiting
time of the short p mare than it i the waiting time of the long process. Consequently,

The real difficulty with the SIF algorithm knows the lengih of the next CPU request. For long-
term (job) scheduling in a batch system, we can use as the length the process time limit that a user
specifies when he submits the job. Thus, users are motivaed o estimate the process time limit
accurately, since a lower value may mean faster response. (Too low a value will cause a time-
limit-exceeded eror and require resubmission.) SJF scheduling is used frequently in long-term
scheduling,

Although the SIF algorithm is optimal, it cannot be implemented a1 the level of shor-term
CPU scheduling. With short-term scheduling, there is no way to know the length of the next CPU
burst. One approach is to try to approximate SJF scheduling. We may not know the length of the
next CPU burst, bul we may be able to predict its value. We expect that the next CPU burst will
be similar in length to the previous ones. By computing an approximation of the length of the next
CPU burst, we can pick the process with the shortest predicted CPU bursy.

4.3.3 Priority Scheduling

The SIF algorithm is a special case of the general priority scheduling algorithm. A priosity is
associated with cach process, and the CPL is allocated to the process with the highest priority.

i Operating System

Equal-priority processes are scheduled in FCFS order.

An SJF algorithm is simply a priority algorithm where the m-iwity_np? is the inverse of the
(predicted) next CPU burst. The larger the CPU burst, the lower the priority, and vice versa,

Note that we discuss scheduling in terms of high priority and low priarity. Priovities arc generally
indicated by some fixed range of numbers, such as 0 to 7 or 0 to 4,095 However, there is no
general agreement on whether 0 i the highest or lowest priority, Some systems use low numbers
to represent ow prionty. others use low numbers for high prionity, This difference can lead 1o
confusion. In this text, we assume that low numbers represent high priofity. :

As an example, consider the following set of processes, assumed to have amived at time 0 in

the order P1, P2, - -, Ps, with the length of the CPU burst given in milliseconds:
Process Burst Time Priarity
Pl 10 3
P2 1 1
P3 2 4
P4 1 5
P 5 2

Priority scheduling can be cither preemptive of non-preemptive. When & process armives a1 the
@xmw. ns _pn'omy ts compared with the priority of the currently running process A preemptive
priority scheduling algorithm will preempt the CPU if the priority of the REwly artived peoges ;
higher than the priority of the currently running process. A non-preemptive Priofity sehegyli =
algorithen will simply put the new process at the head of the ready quese. &

A major problem with privrity scheduling algorithms is indefinite blocking, or Stanvation, A
process that is ready 1o nun but waiting meeCPUmbemeMﬂﬁpdmi,M :
algorithm can leave some low priority processes waiting indefinitely. In a heavily loadeg
system, a steady stream of higher-priority processes can prevent a low-priofity process from
getting the CPU. Generally, one of two things will happen. Either the process will evenmuagy)
run (a1 2 AM. Sunday, when the system is finally lightly loaded), or the computer Sysiem : b'
eventually crash and lose all unfiniched low-prierily processes. will

A solution to the problem of indefinite blockage of low-priority processes is aging, Aging |

techaique of gradually increasing the priorty of processes that wait in the syiem For u g1, >
For example, if priorities range from 127 (low} to O (high), we could increase the Priotity ;.""
waiting process by | every 15 minutes. Eventually, even a process with an initial priarity of 12;

ling
Compyter

27

scheduling 4

would have the highest priority in the system and would be executed. In fact, it would 1ake 40
mane than 32 hours r“'apﬂm-”?wwmwagcmawityﬂpm J

4.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for timesharing systems, It
is similar to FCFS scheduling, but preemption is added to enable the system 1o switch between
A small unit of time, called a time quantum or time slice, is defined. A time quantum is
generally fronc 10 to 100 milliseconds in length. The ready queue is treated as a circular queue.

The CPU scheduler goes around the ready queue, allocating the CPU 10 each process for a
time interval of up 10 1 time quantum. To implement RR. scheduling, we keep the ready queue as
a FIFQ queue of processes. New processes are added to the tail of the ready queve, The CPU
scheduler picks the first process from the ready quee, sets & timer 10 interrupt afler | lime
quantum, and dispaiches the progess.

One of two things will then happen. The process may have a CPU burst of less than | time
quantum. In this case, the process itself will release the CPU voluntarily. The scheduler will then
proceed o the next process in the ready queve Otherwise, if the CPU busst of the currenily
running process is longer than | time quantum, the timer will go off and will cause an intermuplt to
the operating system. A context switch will be executed, and the process will be put at the tail of
the ready queue. The CPU scheduler will then select the next process in the ready queue,

The average wailing time under the RR policy is often long. Consider the following set of
processes that arrive at time 0, with the length of the CPU burst given in milliseconds:

Process Burst Time
Pl A
P 3
P3 3

IF we use a time quantum of 4 milliseconds, then process P1 gets the first 4 milliseconds.
Since it requires another 20 milliseconds, it is preempted after the first time quantum, and the CPU
i given 10 the next process in the queus, process P2 . Process P2 does not need 4 milliseconds, sc
it quits before its time quantum expires. The CPU is then given to the next process, process P3
Once cach process has received 1 time quantum, the CPU is retumed 1o process P1 for ¢
additional time quantum.

Let's calculate the average waiting time for the above schedule. P1 waits for 6 millisconds
(10-4), P2 waits for 4 millisconds, and P3 waits for 7 millisconds. Thus, the average waiting time
18 17/3 = 5,66 milliscconds. In the RR scheduling algorithm, no process is allocated the CPU for
Mare than | time quantum in a row (unless it is the only runnable process). I a process’s CPU
burst exceeds | time quantum, that process is preempted and is pl 1t back in the ready queus. The :
RR scheduling algorithm is thus preemptive,

If there are n. processes in the ready quewe and the time quantum is g, lhe_n each process gels
Vin of the CPU time in chunks of 1t most g time units. Each process must wait no longer than (11

s0 Operating Systg,,
= 1) x q time units until its next time quantum. For example, with five processes and a fim,
Quanium of 20 milliseconds, each process will et up to 20 milliseconds every 100 millisecongs
The performance of the RR algorithm depends beavily on the size of the time quantum Al
onc extreme, if the time quantum is extremely large, the RR. policy is the same as the FCFS policy
In contrast, if the time quantum is extremely small {say, | millisecond), the RR approach 5 calleg
processor sharing and (in theary) creates the appearance that each of 11 processes has its oug
[processor munming a1 11 11 mwwlhermimm.niswomhmwdhcmm
Data Corporation (CDC) hardware 1o implement ten peripheral processors with only one ser of
hardware and 1en sets of registers. The hardware executes one instruction for one set of registers
then goes on to the mext. This cvele continues, resulting in ten slow processors rather than one fasy
one. {Actually, since the processor was much faster than memory and each instruction referengeq
memory, the processors were not much slower than ten real processors would have been,) In
sull_ium we need also to consider the effect of context switching on the performance of RR
; uling, me, for p .mumuwmlympmorlﬁﬁmmlaifﬂreqmmq
i 12 Flmeul'!lls. the process finishes in. less than | time quantum, with no overhead, Ifthe quantum
;ﬁ:‘miﬂwt"m$ process requires 2 quanta, resulting in a context switch. IF the time
um unit, then nine context swil 1 i i

s text switches will oceur, slowing the execution of the process
Thus, Wwe wani the time quantum to be large with respect 10 the context switch time, If the

[Ch ime 15 appros) ¢

ranging from 10 to 100 milliseconds. The time required for 3 context swich o .
10 micreseconds; thus, the context-swvitch time is & small fraction of the limelsq:;'f:nh Sia

auantum is 10, however, the average tumaround timc drops 10 20, !!unmc:n-":ﬁc:i:ni ::::::

i‘-ﬁ“ﬂwWMMlimjmcmmgrwam : X
. abext switches are required. ler time quantum, since more
Although the time quantum should be large compared with the _ . o
ol be too large. If the time quantum is too large, RR scheduling COontext switch time, nm_uld
A rule of thumb is that 80 percent of the CPU bursts shald be ﬁmgfh“:ﬁ: :‘ FCFS policy.
me: quantum.

4.3.5 Multilevel Queue Scheduling
Another class of scheduling algorithms has been creaped r'“‘ijllmim' ;
casily classified into different groups. For example, 2 COmMon divisign iy n which processes are
{interactive) processes and background (batch) processes Thyg, m'lmf-‘bﬂm foreground
different response-time requirements and so may have differen “M“z::s of

28

Scheduling i

forcground processes may have priority (extemally defined) over background processes.

.Amumlc-\e{mu}mdmingn]mm partitions the ready queue into several separate queues.
The processes are permancntly assigned to one queue, generally based on some propesty of the
process, such as memory size, process priority, of process type.

Each queue has its own scheduling algorithm. For example, sepasale queucs might be used for
foreground and background processes. The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an FCFS alorithm

In addition, there must be scheduling among the queucs, which is commonly implemented as
fixed-prionity preemptive scheduling. For example, the foreground queue may have absolute priority
over the background queue. Let's look at an example of a multileve! gquewe scheduling algorithm
with five queues, listed below in order of priority:

System processes
Interactive processes
Interactive editing processes
Batch processes

& Student processes

Each queue has absolute priority over lower-priofity queues. No process in the batch quewe,
for example, could run unless the queues for system processes, interactive processes, and inferactive
editing processes were all empty, If an interactive editing process entered the ready queus while
a batch process was running, the baich process would be preempted.

Another possibility is to time-slice among the quewes. Here, sach queus gets a certain portion
of the CPU time, which it can then schedule among its various processes. For instance, in the
foreground-background queue example, the foreground queue can be given 80 percent of the
CPU time for R scheduling among its p h the background queue 20
percent of the CPU 1o give W its processes on an FCFS basis.

Exercise

Part | (Very Short Answer)
1. What is CPU utilizstion?

2. What is tum-around time?

3. Write about CPU-Input Output burst cycle.
4. Write about CPU Scheduler.

Part Il (Short Answer)
5. Differentiate between pre-emptive and non pre-emplive process scheduling
6. Compare Round robin and SJF scheduling in terms of turn-around time.

7. Write about multi level Queue scheduling.

52 Operating Systam,

Part lll {Long Answer)

8. Explain the FCFS Scheduling with example.

9. Explain priority scheduling in detail. L

10.On a System using Round Robin Scheduling. What would be the effect of including one
process twice in the list of preessess.

29

5.1 Interactive Process and Coordinating Process

Process Synchronization

A coordinating process is one that can affect or be affected by other processes executing in
the system. Coordinating processes can either directly share & logical address space (that is, both
uodemddmlorhal!nmdmshnttmoniymmugh files or messages Concurrent access to
shared data may result in daia inconsistency, however. In this chapter, we discuss various
mechanisms to ensure the orderly exceution of cooperating processes that share a logical address
space, 50 that data consistency is maintained.

we developed a model of a sysiem consisting of cooperating sequential processes or threads,
all running asynchronously and possibly sharing data. We illustrated this model with the producer-
consumer problem, which is representative of operating systems. We deseribed how a bounded

'hmw:ibeusedmuuhleprmmshmmw

Let’s return to our consideration of the bounded buffer As we pointed out, our original solution
allowed at most BUFFER_SIZE - | items in the buffer at the same time Suppose we wani io
madify the algorithm to remedy this deficiency. One possibility is to 2dd an integer variable counter,
initialized to 0. counter is incremented every time we add a new item to the buffer and is
decremented cvery time we remove one item from the buffer. The eode for the producer process
can be modified as follows:

while (erue) |
1* produce an item in nextProduced *|
while (counter == BUFFER_SIZE)
1 1* do nothing 1
buffer(in] = nextProduced;
in = {in + 1) % BUFFER_SIZE ;
counbers+,
]
The code for the consumer process can be modified as follows:
while (true) |
while {counter == 1)
2 1* do nothing *1
nextConsumed = buffer{out],
out = (out + 1} % BUFFER_SIZE;

Operating System

54

COUntEr--;
1* consume the item in nextConsumed *1
H

Although both the producer and consumer routines shown above are comect separately, they
may not function correctly when executed concurrently,

As an illustration, suppose that the value of the variable counter is currently S and that the
producer and [execule the statements “counter++" and "counter-~ concurrently,
Following the execution of these two statements, the value of the variable counter may be 4, 5, or
ﬁ!Thcmlymmmn:,lbwmum—i.m&mmh«ifﬂnmm
and consusmer execute separately.

W can show that the value of counter may be incorrect as follows. Note that the statement®
coumter++" may be implemented in machine language (on 2 typical machine) as

register] = counter
register] = register] + |
counter= registerl
where register| is one of the local CPU registers. Similarly, the stalement
register2“counter=" is implemented as follows:
register2 = counter
register2 = register2 ~ |
counter= register2 e
where again register? is on eof the local CPU registers. Even though register| and'register2
may be ihe same physical register (an accumulator, say), remember thay the conténts of this
register will be saved and restored by the interrupt : “

The concusrent execution of “counter++" and " " is equivalent 10 a sequential -
in which the lower-level statements presented previously are intetleaved in some arbitrary order
(but the order within each high-level statement is preserved). One such intetleaving is

To: producer execute register] =counter {register] = 53
T1: producer execute register] = register] + | {register] = 6}
ﬁ:mmuammﬁwﬂ-m{w.”
T3: consumer execute register = register? . | {w_4}
T4: producer execute counter= register| {eounter =)
Ts: consumer execule counter = register? {counter = 4)

Motice that we have amved at the incomect state s
are full, when, in fact, five buffers are full. If we :c'l'::;.:e md:r';:dn':““% that four buffers
T5, we would arrive at the incorreet state “counter=- §* statements at T4 and

would arrive at this i state b m
w-ilvl‘:emnlu concurrently. A situation like mis,“::.-,wm PROCEsses to manipulate the

the same data Iy and the of the exeeution dﬂm:mmﬁﬂ“i“‘".“
Wdﬂl’ n
™ .

—

— = .
—

30

i

Process Synchronization 55

Situations such as the one just deseribed oceur fi y
parts f:l' lllf fystem manipulate resources. Furthermore, with the growth of multicore systems,
there is an increased emphasis on developing multithreaded applications wherein several threads-

which are quite passibly sharing data-are rmming in parallel on different processing cores. Clearly,

\w‘ﬂmlﬂ)'¢bm“mm!ﬁnmmhmﬂliesmlmmﬂbmwilhmuuhaB:namenf

the importance of this issue, a major portion of this chapter concemed with process synchronization
and coordination amongst cooperating PR
5.2 Critical Section Problem

Consider a system consisting of n processes {Po, P1 P11 _ I} Each process has a

segment of code, called a critical section in which the process may be changing common variables,
up:hﬁnsuwk.miﬁnpﬁlc.wsommimmmﬂﬂxmismm«n

process is executing in its critical section, no other process is to be allowed 1o execute in ifs critical

section. That is, no two processes are executing in their critical sections a1 the same time. The °
mmmpmumhmmnmmmmmsmmmmm
plmmnstmmmmumiuﬁlmmm.mmwmmplmeﬁum
lqumismemmm.m-:tiﬁcdmcﬁmmybel'uiluwndhyanmilswﬁon. The remaining
code 15 the remainder section. The general structure of a typical process Pi is shown in Figure.

* The entry section and exit section are enclosed in boxes to highlight these important scgments of
code, g

do {

critical section
remainder section
} while (TRUE),
Figure 5.2 : Structure of a process
A solution to the critical-section problem must satisfy the following three requi :
1. Mutual exclusion : If process Pi is executing in its critical section, then no othier
can be executing in their critical mm.“'. enras i plm-
2. Progress : If no process is expculing in its critical section some process \'mh 0
enter their critical sections, then only those processes that are not executing in proe
remainder sections can participate in deciding which will enter its critical section next, and
this selection cannot be postpaned indefinitely.

56 Operating Sysy,,
3. Bounded waiting : There exists a bound, or limit, on the number of times thy
pmm_mmalrunedmcnmmei:eri:h:slseeummumcsslusmurth
enter its eritical section and before that request is granted.
We assume that each PEOCESS IS executing at a nonzero speed. However, we can
assumption conceming the relative speed of the n processes. Al a given point in Iim':llu =
::ﬂel-mn_dc processes may be active in the operating system. As a result, the code implementing
m:fms system (kemel code) is subject 1o several passible race conditions. Consider as g
m_ a kemnel danmuehprlhnmﬂnuiutllunrdlmﬁlﬁhﬁ:mm. This list mug
ified when a new ﬁtﬂscrpmdur:lmedladdinglheﬁlululhelislnrmvinsitﬁum.h
o PIOCEsses were to open files simultaneously, the separate updates to this list could

conditions

process Synchronization .

wait(S) |
while § <=0
11 no-ap
e !
i
The definition of signalf) is as follows:
signal(5) |
S,
H
All modifications to the integer value of the semaphore in the wait () and signal() operations
must be executed indivisibly. That is, when one process modifies the semaphore value, no other
process can simultancously modify that same semaphore value. In addition, in the case of wait (5),

T neral i ions i i
:;s'oard i appm:hna_mn:d to-handle critical sections in operating systems: (1) preemptive the testing of the integer value of 5 (5 5 0), as well as its possible modification ($-), must be
IH‘:ru. s 2) nom-preempiive kemels. A preemptive kermel allows a process to be ¥ d without i ption. We shall s¢e how these operations can be implemented bet us see
while it is running in kemel mode. TR how semaphores can be used
A non-preemptive kernel does not allow a PIOCEss running i I
. ing in kernel mode to be preempted: a
: v 5.3.1 The Usage

I:em:]mde process will run until it exits kemel mode, blocks, or voluntarily vields control of the
_' te_mell is essentially free from race conditions on kemel data
. Ismlw:nhmlnlﬁm.%mmyﬁumm
prmmw:kmels, so they must be carefully designed to ensure that shared kemel data are free
:ﬂ tmgth::dum Puwn!;ﬁw kemels are especially difficult to design for SMP mi;:uns.
in environments it i i
e : is pessible for two kemel-mode processes 1o fun simultaneously on
Why, then, would anyone faver a preemptive kemel over a non- i
kemel is more suitable for real-time programming, as it will ﬂlnwmm‘:m precmp
& process currently running in the kemel, Furthermore, a preemptive kemel may be mae —
since there is less risk that a kemel-mode process will run for an arbitrarily long “-am] ufn“m
rl.'!luqullhm;Ih=wmﬁlmmmmmmmhmmhﬂw s
lumel_mtk that does not behave in this way. Later in this chapter, we explore .f:“'s'-"“
operating systems manage preemption within the kernel. il

5.3 Semaphores

The hardware-based solutions 1o the eritical-section problem presented ase COmplicageq
application programmers to use. To overcome this difficulty, we can use & synchrang: for
called a semaphore. A semaphore S is an integer variable that, apart from initialization ™ 100!
only through two standard atomic operations: wait () and signal (). "

The wait () operation was originally termed P (from the Dutch proberen, "1 wk i
was originally called V (from verhogen, “to increment™). The definition of wait (} s ag g, &%)

—

31

s |

Operating systems often distinguish between counting and binary semaphores. The value of a
counting semaphore can range over an unrestricted domain. The value of a binary semaphore can
range only between 0 and 1. On some systems, binary semaphores ane Imown as mutex locks, as.
they are locks that provide mutual exclasion.

Wi can use binary semaphores 1o deal with the critical-section problem £or mUltiple processes.
Then processes share a semaphore, mutex, initialized to 1. Each process P is organized. Counting
semaphores can be used fo control access 10 & given resource consisting of a finite number of
instances. The semaphore is initialized 10 the number of resources available. Each process that
wighes 10 use a resource performs a wait() ion on the hore (thereby dec ing the
count). When a process releases a resource, it performs a signal() operation (incrementing the
count). When the count for the semaphore goes to 0, all resources are being used. Afler that,
MMMmmgmmllbhukumnmummwlm 0.

use semaphores 1o solve vanous synchro on probl For pl id
|mm,-numinspnm:ﬂ with a statement 51 and P2 with a statement 52_.Swpm
we require that 52 be executed only after 51 has completed. We can implement 1lus s_cbemu
mdi!yhj'lultingPlmﬂmammmwminﬁdmwﬂ.ﬂdbwmmm
slatements

50
signalisynch) |
in process Pl and the statemems

—

28 Operating Systey,
wait(synch).
_in process P2, Because synch is imitialized 1o 0, P2 will execute 52 only after P has invoked
signal (synch), which is afler statement 51 has been executed,
5.3.2 Implementation

mmndhdmg;nnh:mmmdeﬁnjﬁm' is thati i ile a process
. Thema . given here is thatit requires While
}smcmmlwummg.wqhermmmwwiummmmmm;
in emrmde.‘l‘]us:onnnualioqilgi::lwbrapmumiumlmunimmmingm
do |
wail (mutex) ;

A process that is blocked, waiting on a semaphore S, should be restarted

Process executes g signal() operation. The process is resiarted by g mﬂm?m‘m el
changes the process from the Walling state 1o the ready state, mmﬁufst:bm M '."'hi‘"
madyquem.{Tyewumwmthsmwrmlh:mnmprmmm (e
Process, depending on the CPU-scheduling algorithm,) ey
To implement semaphores under this definition, we define & semaphore as & "C sy
typedef struct |
int value,
struct process *list:
| semaphore;

32

process Synchronization 59

Eﬂmm“i"wmwalinofmtm.“Mammwm
,1asunal’hﬂff»l"smhmliﬂﬁmmm;mmmmm
the list of Wailing processes and awakens that process,

The wait() semaphore operation can now be defined as

vail{semaphore *5) |
Seewalugs;
iF(S->value < 0) {
add this process to 5->list,
Block(),
H
H
The signal () semaphore operation can now be defined as
signal(semaphore *S) {
S>value+,
iF (S->value <= 0) {
remove a process P fron< S->list;
wakeup(P),
H
} involes eup(P) operation
i the that i it. The wak resumes
the mm "‘.ﬁﬂmﬁa Tm operations are provided by the operating system

s basic system calls. .

P ion, semaphore values may be negative, although semaphore
miﬁmﬂ;"?mm:dmammammwmu Ifa
m“mm“ismmiummkﬂ:nmbnorqunnjgnﬂmm;
This is fact results from switching the order of the decrement and the test in the implementation

ThﬁI{i]sml‘wahmWMRGﬁil!iwmbfﬂllﬂﬁﬂhF?mmk 04:“::;
semaphore uinsuiruewn]uudapommmaluln_

mm?'m wmmm s0 45 1o ensure bounded waiting is to use o FIFO
Guens, moznqﬂWmmnwnsthhﬂdmdnilpoimmwﬂnqm. In gencral, however
Ele|is;mM“T”umm_wwufmdmmﬂwﬂmapﬂmm

\ lists.
Jueuing strategy for the semaphore : two
e ed atomically. We must g MM_ procoR
mltnsmnm_nhu:::ﬂm:“”‘?“ on the same semaphore a1 the same time. Thsls':
H:lmule_ ‘wait() . f,dﬂinﬂ::'ngbw environment (that is, where only one CP
4 ml*ﬂ“ m‘mmﬁh::w;mmwng_ iwmﬂ?“uﬂ'ﬁ:ﬂlﬂ mmgw' lw.,.. =
3¢ exgcuting, This scheme works in 2 SINEICT -

60 Operating Systan,

inhibited, instruetions from different processes cannot be interleaved. Only the cumently l'u-nni;%
Process executes until interrupts are re-enabled and the scheduler can regain conirol,

In a multiprocessor environment, interrupts tust be disabled on GVETY PROCCSSON, Otherwigy,
IRStructions from diffierent processes (running on different processors) may be interleaved in some
a.ll:_llmy vay. Disabling interrupts on SVErY processor can be a difficult task and furthermore con
seriously diminish performance. Therefare, SMP systems must provide alterative locking
techniques-such as spinlocks-1o ensiure that wait() and signal() are performed atomically,

Itis important 10 admit that we have not completely elimi iting with thi iti
of the want () and signal () operations. Rather, nrhi mmm fnli:“l;l‘eu:;:ﬁs:::lﬁ
Io_t.‘n-c mnc-:u sections of application Programs. Furthermore, we have limited busy waiting 1o the
eritical sections of the wait (hand signal () opera times, and these sections are short (if proper]
coded, lhe-_'.-_shnu!d be no mare than about ten instructions), Thus, the critical section is all .
I!F‘Nl'.ﬂﬂup_lcd, =§d busy waIlng oceurs rarely, and then for only a short time. An uuimfydlﬂ';::
Mtuation exists with application programs whose critical sections may be long (minutes or ¢
hours) or may almost always be occupied. In such case of busy waiting is extremely Iml‘llci:::

5.4 Shared Memory Multiprocessor

) m_abm«e dis¢ussion raises an important question. How i
information into 57 [n some cases, q does not need to know, r«Tm::::ﬁmm =i
Program that simply looks a1 the current load in p's machine stored in 5. When ji dn:'m“
know, it could poll, burpulringpu':sundueburdmm the cpu, Nmﬂnrmﬁlﬁyi:ﬁlilﬁn:l;d;ln
oondjlions._ Process q could black il P changes s and sends a signal thas l:u:::mg &
lh:_s: solutions would nat allow q 1o (@utomatically) blok if s cannot hold all the du:',-. o]
waite. (The programmer could manusally implement a bounded bﬂfﬂfﬂiﬂsWﬂMJ '
gnwnlmmwrpmwiswbymmasmmmm' H
OF Communicating information Amang remale processes. Recently, there has been b
distributed shared memory over LANS, which yon wil slud}'bi; 2037243, wm:a.h::rm %
:mplmnqed using inter-process communication. However, even if we could implemgn shareg
mnmyduml_y aver WANS (without message passing), it is not an ideal abstraction Tor al) k;

33

Process Synchronization
5.4.1 Software Inlu-rum

with an interrupt: Handle{interrup number, handler)

sif:\?m inmmhh:mlymbh information 1o be communicate - that &n event associated
with the intermupt nu occurred. They ase typically used by an operaling sysiem io inform
a process about the following events:

The user typed the “aniention hny“.An-malscheduredby the process has expired. Some
limit, such as file size or viftual time, has been excoeded [t is important to distinguish among
inlerrupts, iraps, software interrupts, and exceptions. In all cases. an event is processed
asynchronously by some handler procedure. Interrupt and trap numbers are defined by the hardware

- which is alsa responsible for calling the procedure in the kemel space. An interrupt handler is

called in response to-a signal from another device while a trap handler is called in 1Esponse to an
instruction executed within the cpu.

Software interrupt and exception handlers ase called in user space. A softwase intermupt handler
is called in response to the invocation of a system call. Software mlerrupt numbers ase delined by

operating system. Exceptions are defined and processed by the programming language. An
exceplion raised htnmehluct.b,ormmp.mhm;mhpahmucrmmcm
block, or a blockiprocedure (in p) along static/dynamic links from b, o by a process q that (directly
or indirecily) forked p. The raiser of an exception does not identify which process should handle it
50 exceptions are not IPC’ mechanisms.

The notion of sofiware interrupts is somewhat confused in some environments such as u::
PC. where traps 1o kemel-provided 1O routines are called software interrupts There is a special
instruction on the PC called INT which is used 1o invoke these traps. For instance, the instruction
in1 16H executes the BIOS interrupt routine for processing the cument character received from
the keyboard. (It is exccuted by the interrupt handler of the Xinu kerm! to ask the PC BIOS
handler to feich the chamacter from the keyboard.) The term imterrupt is used because these
routines are called usually by hardware interrupt routines. We are using the 1erm ml'tnitl intermapts
for what Unix calls signals, which st not to be confused with semaphores, though vou invoke the

signal operation on both!
5.5 Classical Problem of Synchronization

Following arc some of the classical problem faced while process synchronization in system
where cooperating process are present

5.5.1 Bounded Buffer Problem
& This problem is peneralised in term of the producer-consumer problem.

62

M inem Chat ilem

Figure 8.1.1 : Producer-Consumer problem

- Mmmgrwpufmpﬂm&mmﬁﬂlpmdmm.
data items into in position and advance the pointer in & each consumer retrieves the dan
item in position oul & advances the pointer out.

& A producer cannot deposit its data if the buffer is full. Similarly, CONSUMET Cannod refrive
any data if the bufler is empty. On the other hand, if the buffer is not full, a producer can
depasit its data. #

* Salution to this problem is, creating two counling semaphose “fill” & “empty” to keep track
of the current number of full & empty buffers respectively.

5.5.2 The Readers Writers Problem

Reader- writers problem ane examples of @ common computing problem in . The
two problems deal with situations in which many threads must access the same shased memory at
one some reading & some writing. With the natural constraint that no process may access the
share for reading or writing while another process is in the act writing to it.

A reader-writer lock is @ data structure that solves one or more of the readers writer problems

5.5.3 Dining Philosopher Problem

The dining philosopher's problem involves the the allocation of |imi
of processes in a deadlock free & starvation free manner, IR e T
‘There are five philosophers setting around a table, in which sticks hesede
umm&ahwlel‘ri:-einwwllmm!ﬂimmlmﬁmﬁwghwlﬁoﬂ
nmh&ieﬂ&mﬁmﬂwirﬁw-m'ﬂihﬁnphrmmmink}gwmm
chopsticks at ﬂm’mrigfmlplane.'fhi!Mﬂni!ldhmdmudrninsphiw roblem
One of the solution using the semaphores. e

34

Operating Systen process Synchronization

Figure 55.3 : Dining Philosopher problem

5.5.4 Sleeping barber problem

Processes exccuting concurrently in

It is a classic interprocess communication & synchronization problem between multiple
aperaling, system processes.

The problem is analogous to that of keeping a barber working when there are customers,
resting when there are none & doing so in an orderly manner.

Mot imph § @& proper can bead to the usual inter process communication
problems of starvation & deadlock.

For example, the barber could end up waiting on a customer & a customer waiting on the
barber, resulting in deadlock Alernatively, may not decide 1o approach the
barber in an Mrm,ludhumpmmuﬁmsmcwmw
the chance for a haireu even though they have been waiting.

This problem involves only one barber, & it is therefore also called the single sleeping
w-;mbhm.hmdﬁpkdwpiubﬂhmptnbhnusinﬁwhlhe mature of implementation
put has the additional complexity of coordinating several barber among the waiting
CUSIOMErs

Here is one implementation of the suggested solution is using semaphore,

Inter-Process Communication
the operating system may be either independent processes

aw,m,awmis independent if it cannot affect or be affected by the other

processes executing in the system. Any proccss

independent.
executing in the system.

that does not share data with any other process is
A process 1S cooperating if it can affiect or be affected by the other processes
cm,mypcmlhaimmmlhmhqptmﬁlsatwu

Process.

F —u_‘___-—.___._u—-_

Operating anl“
that allows process cooperation

ed in the same piece of informag,,
ment 1o allow CONCUTTEND acey,

There are several reasons for providing an envl'rmlTi!rl!
® [Information shasing. Since several users may b interest
(for instance, a shared file), we must provide an emviron

1o such information. L it e o el

® Computation up. If we want a panicular bo run . ; Ingy
subtasks, unhmh‘;:h will be executing in parallel with the others. Notice that such ,
speedup can be achieved only if the computer has multiple processing elements (such 3,
CPUs or 1O channels). -

® Modularity. We may want to construct the system in a modular fashion, dividing the systen

funciions into separaie processes or threads.

® Convenience. Even an individual user may work on many tasks at the same time. Fo

instance, a user may be editing, printing, and compiling in paraliel.

Cooperaling processes require an inter-process communication (IPC) mechanism that wi
allow them to exchange data end information. There are two fundamental models of inter-process
communication: (1) shared memory and (2) message passing. In the shared-memory model, 3
region of memory that is shared by cooperaling processes is established. Processes can the
exchange information by reading and writing data to the shared région. In the message passing

. model, communication takes place by means of messages exchanged between the cooperating
processes.

Both of the madels just discussed are common in operaling systems, and many systems
implement both. Message passing is useful for exchanging smaller amounts of data, because no
conflicts need be avoided. Message passing is also easier to implement than is shared memaory for
inter-computer communication. Shared memory allows maximum speed and convenience of
communication. Shared memaory is faster than age passing, as 3 ing systems i
typically implemented using system calls and thus require the more time-consuming task of keme!
intervention. In contrast, in shared memory systems, system calls are required only to establish
shared-memory regions. Once shared memory is established, all acoesses are treated as routine
memary accesses, and o assistance from the kemel is requied. In the remainder of this section.
we explore each of these [PC models in more detail.

5.7 Message Passing

In last Section, we showed how cooperating processes A s :
environment. The scheme requires that these m&mmaswmm
code for accessing and manipulating the shared memary be wri sk ll'nemoq and “,'".
pmsrm:b'nm. Another way to achicve the same effect is fr :I:"' "n:sxzzyn:::m
means (i 1 e] ui||-| each F 2 o
It Section 34,1, we showed how cooperating processes mm bl Mmessage-passing I'acllln_
environment. The scheme requires that these processes m‘:‘““‘“ﬂr ina slnmd-mm;
code for accessing and manipulsting the shared memory be yrigipy miim?m“n:pmlm

35

F—

process Synchronization &

programmes. Another way to achieve the same cffiect is for the operating system to provide the
means for coopersiing processes to communicate with each other via a message-passing facility

Message passing provides a mechanism to allow processes o communicate and to synchronize
their actions without sharing the same address space and is particularly useful in a distributed
environment, where the communicating processes may reside on different computers connected
by a network. For example, & chat program used on the World Wide Web could be designed so
that chat participants communicate with one anather by exchanging messages.

The most popular form of inter-process ication invalves passing, Processes
communicate with each other by exchanging messages. A process may send information to a pon,
from which another process may receive information. The sending and receiving processes can be
on the same or different computers dviaa ication med:

One reason for the popalarity of message passing s its ability to support client-server imeraction.
A server is & process that offers a set of services to client processes. These services are invoked
in response 1o messages from the clients and results are returmed in messages to the client. Thus
a process may act as a web search server by accepling messages that ask it 1o search the web
for a string. In this course we shall be particularly interested in servers that offer operating system
services. With such servers, part of the operating system functionality can be transferred from the
kemnel to utility processes.

For i file management can be k
open, read, write, and seek. Similarly, terminal manags can also be b
offers services such as getchar and putchar,

A message-passing facility provides at least two operations: send(message) and
Teceive(message). Messages sent by @ process can be of cither fixed or vaniable size. If only
fived-sized messages can be sent, the system-level implementation is straightforward. This resiriction,
however, makes the task flem next Consumed;

while (true) |

while (in == out)
. 11 do nothing
nextConsumed = buffer{out];
oul = (out + 1) % BUFFER_SIZE;
I* consumé the item in nexiConsumed *|
}

Conversely, variable-sized messages require a Inore complex system-
task becomes simpler. This is a comman kind of trade-

dled by a file server, which offers services such as
died by a server that

of programming more difficult !
level implementation, WWFWT:FF
off seen throughout operating system -)

If P and) wanit to communicate , they must send messages to and recaive messages
from m. 4 communication link must exist between them. This link can be implemented in

4 variety of ways.

Operating Sy,

66
5.8 Mailboxes

With indirect communication, the messages are sent to and received from mailboxes, or pon,
A mailbox can be viewsd abstractly a5 an object into miwmﬁfﬂ'ﬁmgﬂm
and from which messages can be removed. Each mailbox has 2 unique identification. For examp),
POSIX message queues use an integer value 1o identify a mailbax. In this scheme, & process cy
communicaie with some other process via a number of different mailboxes.

pProcess Synchronization
& Delete o mailbox.
The process that creates a new mailbox is that mailbax's ewnes by default. Initially, the owner
ﬁﬂgoulypﬂwmﬂllm receive messages through this mailbox. However, the ownership and
receiving privilege may be passed to other processes through appropriate system ealls, OF eourse,
this provision could result in muliiple receivers for each mailbox.

67

Two p — only if the p 5 have o shared mailbox, however Tp, Exercise
send() and receive O primitives are defined as follows: {
® Send (A, message) -Send a message 1o mailbox A. Part | (Very Short Answer)
® Receive (A, messagelReceive a message from mailbox A. In this scheme, 2 communicatio 1. What is Coordinating process?
link has the following properties: 2. What is a software interriapt?
A link s established berween a pair of processes only if both members of the pair have 3. Write about critical section.
shared mailbox. 4. Write about Shared memory.
& A link may be associated with more than bwo processes. -
s B each pair of fog there may be & number of different links, Part Il (Short Answer)
with each link corresponding 1o one mailbox. 5. .Wite in briel about mail boxes.
Now suppose that processes P1, P2, and P3 all share mailbox A. Process Pl sends a 2 6. Compare different techniques of Inter-p ©
to A, while both P2 and P3 execute a receive 0 from A. Which process will receive the message 7. Wit about § ive and coordinating p in brief,

sent by P17 The answer depends on which of the following methods we choose:

® Allow a link to be associated with two processes a1 most.

® Allow at most one process at a lime to cxeculz & receive O operation.

. .-\Ilown‘uuMmmselmuﬁmﬁly%khmswﬁllmuiwlhemlﬁwis
ei:hchzwP}.MlmbﬂuMlJmeihelhem}ﬂwqmahomdefuﬂ
algorithm for selecting wiml: process will receive the message (that is, round rodrin, where
processes take tums receiving messages). The system may identify the receiver to the

A mailbox may be owned either by a process or the operating system i

w:_ndI_:ylmammmis.lh:mai!mEmﬁﬂgﬂmwﬁmlm"wﬁ;:ﬁ:
@ stinguish between the owner (which can only receive messages through this maillm:l} and the
ummhthmnubr#ndmmmmunmﬁlbuj.srmmmﬂmmam-MM
ﬁmmummmmwmmmummmﬁm“z‘ 'Ibnu.
P-"‘hennpt?cuslhm owns a mailbox terminates, the mailbgy disappears. A Smmﬂul
quently sends a __,mlhfsmailbootmmhwiﬁadlrmhmnjlm nrlpmw
I contrast, a mailbox that is owned by the operat o

* Creale a new mailbox
® Send and receive messages through the mailboy,

36

Part Il (Long Answer)

8. \mhtﬁlhlm?meeﬂwS&LﬁmuufniﬁFﬂmPrN:m?&qﬂdn
9, Explain Semaphores with the help of example,

10. Descrbe the p of synchronization 7

—

Daadlﬂct

—-—________————-_-_-—.___-"1;__-____—
sharing the same resource
Iting in both PrOZrams ceag,

A deadlock is a sinzation in which lwﬂlmpﬁﬂ
effectively preventing cach other from accessing the resource, resy

1o funciion.
Operating system is a resource allocator, There are meany resources that can be allocateq

only one process ot 8 time, and we have seen many operating system features: that allow this
Smnﬁmamhsmmcmmoumufth.lpmm

copies files from ane tape to another generally requires 1wo tape drives. A process which deaky

with databases may need to lock multipke records in a database. |
Is it a state where two ore more operations are waiting for each othér, Say & COMPUNInG actio

*A” is waiting for action B to complete. while action B can only execule when "A’ is completed

Such a situation would be called a deadlock. [n operating systems, a deadlock situntion is amived

when computer resources required for complese of o computing task are held by another task thy

is waiting to execute. The system thus goes into an indefinite loop resulting info a deadlock.

The deadlock in operating sysiem seems fo be a common issee in muliiprocessor sysiems, |

Ilel and distributed g el

Four (4) necessary conditions that must hold simultaneously for there to be a deadlock

P 1. Mutual Exclusion Condition : Only ane process at a lime claims exclusive eontrol of
resource. If another process requests that resource, the requesting proc el

until the resource has been released i At b
2. Hold and Wait Condition : A process that is holding a

while waiting for additional that are Iy bei 'l',mmm-h:dyallouledwl
3. No-Preemptive Conditi Y e ng Sl by ot procasse.
L mptive Condition : Resources cannol be rem,

used to completion or released by the process holding it ered i e peosnsons o
4. Circular Wait Condition : Esch process i st is waiti

next process in the list, i mm'm““‘"mfﬂﬂ resource held by the

6.1 System Model

® A system can be modeled a5 a collection of Jimi fesoun ; P~
into different categories, to be allocated 10 5 I::::;of - which can be PW'
needs, mrocesses, cach having differss!
® Hesource categories may include mempry,
ROMS, etc PMEE, CPUs, open files, tape drives, €

37

peadlock 69

e By definition, all the resources within a category are equivalent, and a request of this

category can be equally satisfied by any one of the resources in that category. If this is

not the case (i.e. if there is some difference between the resources within a category),

then fhnl calegory needs to be further divided into separate categories. For example,
“printers” may need to be separated inio “laser printers” and “color inkjet printers”,

» Some coegorics may have a single resource

® [n normal operation a process must request a resource before using it, and release it when

it is done, in the following sequence:

1. Request - If the request cannot be immediately granted, then the process must wait until
the resource(s) it needs become availsble. For example the system calls openi), malloc(), new(
), and request().

2. Use - The process uses the resource, e.g. prinis to the printer of reads from the file.

3. Release - The process release the resource, 5o that it becomes available for other processes.

For example, close(), free(), delete(), and release)

Necessary Conditions
In order for deadlock to occur, four conditions must be frue.

Mutual Exclusion - Each resource is either cumrenily allocated to exactly one process or it is
ilable. (Two p cannol I Iy control the same resoarce or be in their critical

section).
Hold and Wait - A process must be simultaneously holding at least one resource and waiting
for at least one resource that is cumently being held by some other process.
No preemption - Once a process is holding a resource (i.e. once its request has been granted
}, then that resource cannot be taken away from that process until the process voluntanly releases it
Circular Wait - Each process is wailing te obtain a resource which is held by another
process. A set of processes { PO, PI, P2, ..., PN | must exist such that every P[i] is waiting for

Pl{i+1)%{N+1)]

6.2 Resource-Allocation Graph
Deadlocks can be undersiood more clearly through the wse f Resource-Allocation Graphs,
baving the follawing properties: .
1. A set of directed arcs from Pi to Rj, indicating that process Pi has requested Rj, and is
currently waiting for that resource 1o become available, that is Request Edges.
2. A set of directed ares from Rj to Pi indicating that resource Rj has been allocated to
process Pi, and that Pi is currenly holding resource Rj.that is Assignment Edges.
can be converted into an assignment edge by reversing the direction of the
ranted. { However note also that request edges point io the

3 ﬁ;.m]u:stadpﬂ
edges emanate from a particular instance dot within

arc when the request is g
category box, whereas assignment

Operating Syster,

70
4, ::m;me in the system RI.RLN----»“-@@W“QM“MM
lmw.mmmmmmw'ﬁ"m”wm
5. A setof processes, { P1LP2,P3, .. .Pn}] & &
For example:
e =] [
- Pl is holding an instance of R2 and waiting for an instance
A ® ® @

- P2 is holding an instance of R1 and R2, and is waiting for
an instance of R3.

- P3 is holding an instance of R3.

The graph does not contain any cycles. What does that
mean?

L

R,

R'
Figure 6.2 (a): Resource allocation graph
® Two minimal cycles exist in the system:
= P1=R1—P2—R3-P3-R2—PI

A, A
£
- P25R3P3sR2P2

® Processes P1, P2, P3 are deadlocked. @ @
- P2 is waiting for B3, which is held by P3.

- P'3 is waiting for Pl or P2 to release R2.
= Pl is waiting for P2 10 release RI.

@

)

Figure 6.2 (b) : Resource allocation graph wﬂlﬁ deadlock
We have a cycle:

P1=R1—=P3—R2-PI

® There is no deadlock.

® P4 may release its instance of R2 and that resource can
then be allocated to P3 breaking the cycle.

I graph contains no cycles no deadlock,

® |f graph contains a cycle ?

- if only one instance per resource type, then deadlogk

- if several instances per resource type, possibility of deadlogy,

38

peadlock

—— Tl

6.3 peadlock P"“““ﬂl‘l

By ensuring that a1 least one of these conditions cannot hold, we can prevent the occurrence
of a deadlock.

There must be following four conditions that must hold simul
occur.

1. Mutual exclusion

2 Hold and Wait

3. Mo preemption

4. Circular wait
1. Mutual exclusion

& Mot required for sharable resources; must hold for non-sharable resources

® For example, a printer cannot be simultaneously shared by several processes.

® A process never needs 1o wail for a sharable resource

‘;Iora‘ dlocks to

2. Hold and Wait
s Must g that & process reg) a resource, it does not hold any other
resources.
* One protocol requires each process 1o request and be allocated all its resources before it
bogi :

& Or another protocol allows a process to request resources only when the process has
none. So, before it can request any additional resources, it must release all the resources
that it is currently allocated.

* Example to illustrate the difference between the two protocols: A process cnpics_d:n
m.mmwmmmmmdu file, and then prints the results to a prinkes.

| Tape j——-[Disk l—b‘ Prifter I
- Protocel 1: request all tape, disk, peinterand hold for entire execution; nole printier will be idle
for a long time.]
. mm 2: request tape and disk only after copying release both then request disk and
Prinier after printing release both. |
Two main disadvantages to these protocols
1 Lnn\:mrnﬁwm wiilization: sinoe many of the resources may be allocated but unused for a
long time: .
: aa | popular resources may have to wait
2 i ible: A process that necds soveral popu
iﬂﬂeﬁnmmbecwm ::s:: teast one of the resouces that it needs is always allocated to some other

e e

Operating Systen,
z ok, we can use the followi,
3.T!hs:mmnmlnn:T:u.--'\smnr|1l=||lhi!ﬂl}fl'd'i“""""“""“""'"q'ld"";w"'m“"pe lowing
® If a process that is holding some requests another resource thal cannoq by
immp;iad_'.- allocated mn.lihenall resources currently W"s'_“’” are "h”d_'
® Preempicd resources are sdded 10 the list of resoUces for which the process is waiting
© Procsss will be restared only when it can regain its old resources, a8 well as the new
ones that it is roquesting.
4, Circular wait
® To ensure that the circular-waii condition never holds is 1o determine a total ordening of all
resource ypes, and to require that each process requests resources in an increasing order
of enumeration *

» Example Let R=[R1. R2, .., Rm} be the set of resource iypes.Assign 10 each resoure |

type & unique integer number to compare two resources and to determing whether one
proceeds another in ordeming.
& For ple: If the set of types R
then a function F might be defined as follows:
Fitape drivey= |; Fidisk dnive)= 5; F(Printer)= 12.
® A protocol 1o prevent deadlocks: Each uest i i i
& pracl & - process can request nesources only in an increasing
* A process can initially request any number of instances of a resource type Ri
1. That process can request instances of resource type Rj if and only i j 0
| b y if F(Rj)=F(Ri). From the
previous eximple, & progess wants 10 wse the tape drive and pri same (i
request the tape drive and then the printer. P e g !

jusdes tape drives, disk drives, and printers

paadluclt 5 73

a possible future deadlock. Each request requires that in making this decision the system consider
\he resources currently available, the resources cumently allocated to each pracess, and the future
requests and releases of cach process

“The various algorithms that wse this approach differ in the amount and type of information
required. The simplest and most useful model requires that cach process declare the maximum
aumber of resources of each type that it may need. Given this a prior information, it is possible to
consinect an mﬁmwmulmmmllmmawm state. Such an
algorithm defines the deadlock-svaidance approach. A deadlock-avoidance algonithm dynamically
examines the resource-allocation state 1o ensure that a circular wait condition can never exist. The
resource-allocation state is defined by the number of available and allocated resources and the
maximum demands of the processes. Inthe following sections, we explore two deadlock-avoidance
algorithms.
6.4.1 The Safe State

A state is safe if the system can allocate resources to cach unsafe
process (up 1o its maximum) in some order and still avoid 2
deadlock. More formally, a system is in a safe state only if there
exists a safe sequence. A sequence of processes <P1, P2,

safe

Pn> is a safe sequence For the current allocation state iff, for each
Pi.m:msnumemmﬂﬂﬁmsﬁllmhmbeﬁﬁsﬁ:dhy
the currently available reseurces plus the resoarces held by all Pi.
with j < i. In this situation, if the resources that Pi needs arc not
immediately available, then Pi can wait until all Pj have finished
When they have finished, Fi can obtain all of its needed resources,

2. When a process requests an instance of resouree type Rj, i
such that F(Rip>=F(Rj) 1ype R, it has released any res: Ri

& By applying | and 2 then the circular-wait condition okl
6.4 Deadlock Avoidance

Dradlock-prevention algorithms, as discussed in previ
. Previs,
e o ot et g S et e et
omoch oo o . e, ek kot M. Py sy e vos
P mcﬂmd = _.wlwdm:: UIiliuMMMw eflfects of preventing
resources are 1o be requested F““l';dud_‘“‘tlulolﬂqlimﬂmm' ional e
me:m.ommm"""“*m with one tage g information about PO
before releasing both resourees, whereas P will request firs 1h g ,,,']‘: and ane mnler,':
drive. With this knowledge of the Process Q will requess irgy g o and then the prin
the system can decide for each COMPIS I of thgmsy g e e the 18
reg; Wﬁ""whmmﬁuwlﬁrﬂ;ﬁ pfo::’
er 1o

prevent deadlocks by restraining

39

I.

P i:sdtsipwdlulc.r:misdluu:d resources, and
terminate, When Pi terminates, Pi+l can obtain its needed
resources, and so on. If no such sequence exists, then the system
stale is said 1o be unsafe

Figure 6.4.1 : Safe and
unsafe States

A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. Mot
all unsafe states are deadlocks, however. An unsafe state may lead to a deadlock. As long as the
stale is safe, the operating system €an avoid unsafi: (and deadlocked) stutes, In an unsafe siate,
the operating system cannol prevent processes from requesting resources. in such a way that a
Mukm.mmﬂwrdmewmmmm&m_

To illustrate, we consider a system with twelve magnetic tape drives and three processes: Po,
P1, and pz_mmmumnnup:dmts_p_mm Pl may need as many as four tape
d.immdP,mpzmnmdupmuir_-uup:dﬂws.Suppouthu.utnmgmmNu
hﬂlﬂingﬁmupcdnws.wﬁpl ismnmmwdnmmmmﬁm‘tmmm
drives (Thus, there are three fice 1pe ehve) e

At time 10, the system is in @ safe state. The scquence <P1, PO, P2 satishies the safety
condition. Pm:'m p1 can immedistely be allocated all its tape drives and then return them (the

2l Operating Syst,

system will then have five available tape drives); then process Po can get all il lape drives gy,
retum them (the system will then have ten available tape drives); and finally process P2 can gey)
fis tape drives and retum them (the system will then have all twelve tape drives available) ,
Wﬂﬂ can go from o safe state o an unsafe stye. Sappose that, al time 11, process P2 requesy
and is allocated one more tape drive. The system is no longer in a safe state. Al this poiny,

process !‘T can be allocated all its tape drives When it retums them, the system will have only
four available tape drives. Since process Po is allocated five tape drives but has a maximum of
ten, it may request five more tpe drives. If it does so, it will have to wait, because they ey
umavaslable. Similarly. process P2 may request six additional tape drives and have to wait, resulting
L O ke b e o e i

2 il ither of the . :
then we could have aveided the Mm};_«m had finished and released its resources,

6.4.2 The Bankers Algorithm

The resource-allocation-graph algosithm is pot apali ion system
The r applicable 1o a resource allocatio i
!nuln,pfe Instances of each resource type. The deadlock avoidance algorithm that mr:imribe m

® Allocation. An 11 x m matrix defi
nes ihe ny
allocated 1o cach process. I Allocation!ii; s TEsOURzes urrently
ke instances of resource type p;_mmmmﬂqu‘ then M;tp::.hmb? :Jl u[el-;
* ly alloc

* Need. An 0 xm matrix indicates the remaini
ning resoy
m:.l;:r.‘m; process P. may need k more in ’“ﬂmdmm I Need(ili]
. that Need[i](i] equals Max(i]j) - Allocation esource fype g to complete its
These data structures vary over time in both size gng mu:'l[lf -

40

peadlock 75
el s

To simplify the presentation of the banker's algorithm, we next establish some notstion. Let X
and ' be vectors of length 11, We say that X« ¥ if and only if X[i] == Y[i] for all i=1,2.
For example, if X = (1,732) and ¥ = (0,3.2,1), then Y =X In addition, ¥ < X if ¥ :=X andY¥# X_

We can treat each row in the mairices Allocation and Need as vectors and refer o them as
Allocation; and Need,. The vector Allacation; specifies the resources cumrently allocated to process
P;:&WMLWM the additional resources that process F; may still request to complete
its

6.5 Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm,
then a deadlock situation may oceur. In this environment, the system may provide:

An algonithm that examines the state of the system to determinge whether a deadlock has

occurred

+ An algonithm to recover from the deadlock

In the following discussion, we elaborate on these two requirements as they pertain 10 systems
with only a single instance of each resource type, as well as fo systems with several instances of
each resource type. At this point, however, we note that a detection-and-recovery scheme requires
overhead that includes not only the run-time costs of maintaining the necessary information and
exccuting the detection algorithm but also the potential losses inherent in recovering from a deadlock.

6.5.1 Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock detection algorithm
that uses a variant of the resource-allocation graph, called a wait-for graph. We obtain this graph
from the resource-allocation graph by removing the resource nodes and collapsing the appropriate
M-hhrﬂpmcisﬂy.uodaefmﬁwﬁinanﬁhhfgﬂimﬁﬁlhlpmhismw
for process P to release a resource that P; needs. An edge Pz —+ Pi exists il a wait-for graph if
meifmwdingm:ilmwmwmmughanqmmq b
Pi for some resource Rq. _ :

As before, a deadlock exists in the zystem if and only if the wail-for graph contains a cycle.
To detect deadlocks, the system needs to mainiain the wait-for graph and periodically invoke an
aligorithm that searches for a cycle in the graph. An algorithm to detect a cycle in a graph requires
an order of n operalions, where n is the number of vertices in the graph.

6.5.2 Several Instances of a Resource Type

it-for graph scheme is not applicable to & llocation system with multiple
imm“;ﬂmmw-“'mm'“wmﬂmmuw@h
hmhaw,mdgmlhmmpmumﬂﬁmmwdsﬂammhxmmum
thuse used in the banker's algoriihm:

76 Operating Sysy,,.

* Available: A vecior of length nz indicates the number of available resourees of each

® Allocation. Ann x nz marix defines the number of resources of ¢ach type Eureng,

allocated 1o cach process.
* Request. An nx m matrix indicates the cumrent request of each process. IIReqml
equals k. then process P, is requesting k mare instances of resource type Rj.

Q

()
Figure 6.52 ; (a) Resource Allocation Graph (b) C'h"mmh: Wait-for Graph
e

6.6 Deadlock Resolution

& detection algorithm determines
V8 20853 biliny s g & that a deadlock exists, severy] i
with mm’mm"“‘mhmm-wmﬁam altemnatives are available.
sutomatically, Thepe s 3 Another passibilt is 1 let the gysom e - € Operator deal
T e e two aptions for breaking a deadipel, g - o0 ffom the deadlock
pmmmhrcaklhcmculuwtmuwism &'"““‘Wluibmmop
ocked processes. Preempt some mare

fesourees from one or more of
6.6.1 Process Termination
To eliminate deadlocks by abartin
i IE & process,
mmmmma!rmwurm,ah:“‘!ﬂmmmwl ot
® Abort all deadlocked processes. Thi T Procesyes - In methods,

e ‘M‘Ihndghﬂ i

gres ex the dead ¥ will bregy
ipense; locked processes may haye COmpugeq t"ﬁmﬂk cycle, but at

4 long time, and the

-

41

i)

—

peadiock 27
results of these partial ; 3
rocompted later Computations must be discarded and probably will have 10 be

® Aborl onc process at a time unil the deadlock cyele is eliminated. This method incurs
considerable overhead, sine after each process is aborted, a deadlock-detection algorithm
must be invoked to determing whether any processes are still deadlocked.

Aborling & process may not be easy IF the process was in the midst of updating a file,
rerminating it will leave that file in an incomect state. Similarly, if the process was in the midst of
printing data on a printer, the system must reset the printer 1o a correct state before printing the
next job. If the partial termination method is used, then we must determine which deadlocked

process (or processes) should be terminated. This d is a policy . similar to
CPU:scheduling decisi The question is basically an ccomomic one, we should abort those
processes whaose termination will incur the mini cost. Unfor , the term mini cost is

not & precise one,

Many factors may affect which process is chosen, including:

1. What the prionity of the process is

2. How long the process has computed and how much longer the process will compute
before completing its designated task

3. How many and what fypes of resources the process has used (for example, whether the
resources are simple 1o peesmpt)

4. How many more resources the process needs in order 1o complere

5. How many processes will need 10 be terminated Whether the process is inferactive or
baich -

6.6.2 Resource Preemption

To eliminate deadlocks using resource preemplion, we SUCCEsSively pre-cmpl SOME rESOUrCes
from processes and give these resources 1o other processes. 1-m 1l the deadlock cvele is broken.
If preemption is required to deal with deadlocks. then three issues need 10 be addressed

1) Selecting a victim. Which resources and which processes arc to be preempted? As in
process lermil<ation, we must determing the order of preemption 1o minimize cost. Cost factors
may include such as the number of resources a deadlocked process is holding and the
amount of time the process has thus far consumed dunng its execution

2) Rollback. If we preempt a resounce from a process, »hq:;hwldb:m with that process?
Clearly, it cannot contil<us with its normal execution it is missing some needed resource. We must
rall back the process (o Some safe state and restant it from that stase. Since, in general, it is
difficult 1o determine what o safc state is, the simplest solution is a total roliback: abort the process
and ther restant it Although it is more effective to roll back the process only s far as recessary
10 break the deadlock, this method requires the system 1o keep more information about the state of

all running processes

e —

Operating Systey,

L : : r? That is, how can we guarane
3) Starvation. How do we ensure that starvation will not occur: 5)

that resources will not always be preempted from the same proceis. tors. it mav happen that g,
In a svstem where victim selection is based primarily on ““it :fvcr Emnpit‘lﬂs s dﬂﬂignate;

same process is always picke” as a victim. As a result, this o | system. Clearly, we must ensyy,
task. a starvation situation that must be dealt with in any practical sySICit. The Aibig s
that 2 process can be picked as a victun” oniy a (small) fimte number of times. ¢ommon

solution 1s o incluue he number of rolibacks in the cost factor.

Exercise X

Part ! (Very Short Answer)

1. What is situation of deadlock?
s What is a mutual exclusion?

3. What is deadlock avoidance?

4. What is deadlock detection?

S. What do you mean by roll back.

Part Il (Short Answer)

6. .Write in brief the necessary conditions of deadlock
7. Write in brief about deadlock prevention.
8. ‘Write in brief about process’

Part-lll (Long Answer)

9. Explain Resource allocation graphs with example.
10. Explain deadlock prevention in all four conditions,

42

