
SQL

SQLis a database computer language designed for the
retrieval and management of data in a relational
database.

SQLstands forStructured Query Language.

SQL is the standard language for Relational Database
System.

All the Relational Database Management Systems
(RDMS) like MySQL, MS Access, Oracle, Sybase,

Informix, Postgres and SQL Server use SQL as their
standard database language.

Applications of SQL

Allows users to create view, stored procedure, functions in a

Allows users to set permissions on tables, procedures and views

Allows users to access data in the relational database
management systems.
Allows users to describe the data.
Allows users to define the data in a database and manipulate
that

Allows to embed within other languages using SQL modules,

data.

libraries & pre-compilers.

Allows users to create and drop databases and tables.

database.

RDBMS

columns and rows.

1. Table -The data in an RDBMS is stored in database

A Relational database management system (RDBMS) is
a database management system (DBMS) that is based

on the relational model as introduced by E. F. Codd.

objects which are called astables. This table is
basically a collection of related data entries and it is
a collection of

Some important terms:

2. Row/ Tuple

A record is also called as a row of data is each

3. Column/Attribute

A column is a vertical entity in a table that contains all

individual entry that exists in a table.

A record is a horizontal entity in a table.

information associated with a specific field in a table.
4. Cardinality

cardinality of table.
The number of rows in a table is called

Example of DBMS software

� SQL Server 8 , 10 , 12, 16 (By Microsoft)
Oracle 9 ,11, 12 etc. (By Oracle)�

�

�
My SQL (By Oracle)
DB2 (By IBM)

Front End vs Back End

SQLData Types

we store less character then it changes to less size.

example-name char(15)
2. Varchar(size) –size is variable and of character type.

�The data type of a column defines what value the column
can hold: integer, character, date and time and so on.
Char(size) –Character data type of defined size.

example- fname varchar(15)
* Maximum we can store 15 bytes i.e. 15 characters, but if

1.

�Variable size.
6. Date
�

3. Integer/int(size)
�
Signed range is from -2147483648 to 2147483647.
Unsigned range is from 0 to 4294967295.
4. Nchar(size)
�
Here 1 char = 2 bytes, so Nchar(15) = 30 bytes
5. Nvarchar(size)
�
Here also 1 character= 2 bytes

Format: YYYY-MM-DD. The supported range is
from '1000-01-01' to '9999-12-31'

Basic Commands in Mysql

1. To create database –create <dbname>;
To Select any database –use <dbname>;

– desc <tablename>;
describe <tablename>;

2
.
3
.
4
.

To view available databases –show databases;
To view tables inside any databases –show tables;

5. To structure/schema of any table

Create table Command in SQL

�Syntax
create table <table name>

attribute1 data type
constraint, :
:

);

(
attribute1 data type constraint,

Sample code of Create Command

Create table
student (

fname
varchar(15),
marks integer(3) //primary key(sid) -table level

);

sid char(5) primary key, -attribute level sname
varchar(15),

Sid Sname Fname Marks

Insert Command

ways.

�The INSERT INTO statement is used to insert new records
in a table.

Insert Into Syntax
� It is possible to write the INSERT INTO statement in two

1. insertintotable_name(column1,column2,column3, ...)
values(value1,value2,value3, ...);
insertintotable_name
values(value1,value2,value3, ...);

2.

Example

1.

2.

values (‘s103’, ‘rahul’, ’95’);

insertintostudent (sid, sname, scity,
smarks) values (‘s101’, ‘akash’, ‘raipur’,
‘95’);
insertintostudent values (‘s102’, ‘amit', ‘raipur’, ’95’);
insertintostudent (sid, sname, smarks)3.

SQL SELECT Statement

� The SELECT statement is used to select data from a database.
� The data returned is stored in a result table, called the re

Syntax

If you want to select all the fields available in the
table, use the following syntax:
�SELECT*FROMtable_name;

�SELECTcolumn1,column2, ...FROM<table_name>;

Example

�Select * from student;
�

Select Sid , Sname from student;

SQLSELECT DISTINCTStatement

�
SELECT DISTINCT Syntax

selectdistinctcolumn1,column2, ...

�The select distinct statement is used to return only

values; and sometimes you only want to list the different

fromtable_name;

distinct (different) values.
Inside a table, a column often contains many duplicate

(distinct) values.

�

The SQL WHERE Clause

WHERE Syntax

�The WHERE clause is used to filter records.
�

The WHERE clause is used to extract only those

� selectcolumn1,column2, ...
wherecondition;

records that fulfill a specified condition.

fromtable_name

Example

�

�

From <tablename>
[Where <condition>];

�Select * from student;

Select * from student where Sname= ‘Rahul’;
Select Sname, marks from student where marks<40;

�

�

Select <attribute list>
Sequence

Select Sid , Snamefrom student;
Select * from student where marks >70;

Operators in The WHERE Clause

Operator Description

=

<

<=

Equal

Less than

written as !=

Less than or equal

>

>=

< >

BETWEEN

LIKE

IN

Greater than

Greater than or equal

Between a certain range

Search for a pattern

To specify multiple possible values for a column

Not equal.Note:In some versions of SQL this operator may be

Like Operator

Two Symbols:
% = Any number of characters

Q1 –Find out records of those students whose name

2. Find out records of those students whose name
ends with letter ‘A’.

1
.
2
.

_ = Single number of character

Answers-select * from student where name like ‘ %A’;

starts with letter ‘A’.
Answers-select * from student where name like ‘A%’

Raman, Karan, Aman, Ananaya

�3. Find out records of those students whose second

4. Find out records of those students whose first
letter is A and last letter is I .

letter is A.
Answer: select * from student where name like ‘_A%’;

Answers-select * from student where name like
‘A%I’; 5. Find out records of those students whose
name is
having atleasttwo times A .
Answer: select * from student where name like
‘%A%A%’;

Rahul, karan, vamsi, mohan,

‘_____’

6. Find out records of those students whose name
length is 5.
Answer: select * from students where name like

IN OPERATOR

� In operator is used to find out selected values.
Ques: Find out the records of those student whose
marks are either 90 or 80 or 10;
Query : select * from student where marks
IN(90,80,10);

BETWEEN

�It is used for any range.
Question: Find out the records of those students whose
marks are between 60 to 90;
Query : select * from student where marks between 60
and 90;

Logical Expression

� AND
OR

�Select * from student where marks >40 AND marks <80;
Select * from student where marks 40 or marks <80;

�

�

�

�

NOT
Example

Select * from student where not marks=50;

SQLORDER BYKeyword

�The ORDER BY keyword is used to sort the result-set in
ascending or descending order.
�
The ORDER BY keyword sorts the records in ascending
order by default. To sort the records in descending order,
use the DESC keyword.
�

selectcolumn1,column2, ...
fromtable_name
orderbycolumn1, column2, ...asc|desc;

ORDER BY Example

�

orderbycountry;
ORDER BY Several Columns Example

select * from customers
orderbycountry, customername;
select * from customers

�The following SQL statement selects all customers from

orderbycountryasc, customernamedesc;

the "Customers" table, sorted by the "Country"
column: select * from customers�

�

SQLNULL Values

�A field with a NULL value is a field with no value.
�

A NULL value is different from a zero value or a field
that contains spaces.
�
It is not possible to test for NULL values with
comparison operators, such as =, <, or <>.
�

We will have to use the IS NULL and IS NOT NULL
operators instead.

IS NULL Syntax IS NOT NULL Syntax

null;

select column_names

not null;

select column_names
from table_name
where column_name is

from table_name
where column_name is

Types of SQL Commands

DML –Data Manipulation
Language DCL –Data Control
Language

�These SQL commands are mainly categorized into four
categories as:

DDL –Data Definition Language

TCL -Transaction Control Language

1.

4.

2
.
3
.

Types of SQL Commands

The SQL UPDATE Statement

UPDATE Syntax
�
UPDATEtable_name
WHEREcondition;

�The UPDATE statement is used to modify the existing
records in a table.

SETcolumn1=value1,column2=value2, ...

� DELETEFROMtable_nameWHEREcondition;

�The DELETE statement is used to delete existing records
in a table.

DELETE Syntax

Example -
�

DELETEFROM S3 WHEREsid= 3;

SQL DELETE Statement

SQLDROP DATABASEStatement

DROP DATABASE database_name;

� The DROP DATABASE statement is used to drop an
existing SQL database.

Syntax

SQLDROP TABLEStatement

DROPTABLEtable_name;

� The DROP TABLE statement is used to drop an
existing table in a database.

Syntax

SQL TRUNCATE TABLE

Syntax

� The TRUNCATE TABLE statement is used to delete

� TRUNCATETABLEtable_name;
�

TRUNCATE table_name;

the data inside a table, but not the table itself.

SQLALTER TABLEStatement

�The ALTER TABLE statement is used to add, delete,

�The ALTER TABLE statement is also used to add and

or modify columns in an existing table.

drop various constraints on an existing table.

ALTER TABLE -ADD Column

ADD<column> column_namedatatype;

�To add a column in a table, use the following syntax:

ALTERTABLEtable_name

Example -The following SQL adds an "Email"
column to the "Customers" table:
�
ALTER TABLE Customers
ADD<column> Email varchar(255);

ALTER TABLE -DROP COLUMN

ALTER TABLE table_name

�To delete a column in a table, use the following

Example -The following SQL deletes the
"Email" column from the "Customers" table:
�
ALTERTABLECustomers
DROP <COLUMN> Email;

syntax.

DROP<COLUMN>column_name;

ALTER TABLE -ALTER/MODIFY COLUMN

ALTERTABLEtable_name

�To change the data type of a column in a table, use
the following syntax:

MODIFY<COLUMN>column_namedatatype;

SQL Constraints

�SQL constraints are used to specify rules for data in a
table.
�
Constraints can be specified when the table is created
with the CREATE TABLE statement, or after the table is created with the ALTER TABLE statement.
Syntax

CREATE TABLE table_name (

column2 datatypeconstraint,

....

column1

datatypeconstraint,

column3

SQL Constraints(cont.)

�Constraints can be column level or table level.

�Constraints are used to limit the type of data that can
reliability of the data in the table. If there is any

Column level constraints apply to a column,
and table level constraints apply to the whole
table.

go into a table. This ensures the accuracy and

violation between the constraint and the data action,
the action is aborted.

The following constraints are commonly used in
SQL:

1)

2
)
3
)4)

PRIMARY KEY-A combination of a NOT NULL and

CHECK-Ensures that all values in a column satisfies

a
specific condition

specified

NOT NULL-Ensures that a column cannot have a NULL
value
UNIQUE-Ensures that all values in a column are different

UNIQUE. Uniquely identifies each row in a table

DEFAULT-Sets a default value for a column when no value is 5)

https://www.w3schools.com/sql/sql_notnull.asp
https://www.w3schools.com/sql/sql_unique.asp
https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_check.asp
https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_check.asp
https://www.w3schools.com/sql/sql_notnull.asp
https://www.w3schools.com/sql/sql_unique.asp
https://www.w3schools.com/sql/sql_default.asp
https://www.w3schools.com/sql/sql_default.asp

SQLNOT NULLConstraint

�

�
By default, a column can hold NULL values.
The NOT NULL constraint enforces a column to
NOT accept NULL values.
�
This enforces a field to always contain a value,
which means that you cannot insert a new
record, or update a record without adding a value
to this field.

Syntax

1. CREATETABLEPersons (ID intNOTNULL,
LastName varchar(255)NOTNULL,
FirstName varchar(255)NOTNULL,
Age int);
2. ALTERTABLEPersons

MODIFYAge intNOTNULL;

SQLUNIQUEConstraint

UNIQUE constraint.
However, you can have many UNIQUE constraints

table.

�The UNIQUE constraint ensures that all values in a
column are different.
�

Both the UNIQUE and PRIMARY KEY constraints
provide a guarantee for uniqueness for a column or
set of columns.

A PRIMARY KEY constraint automatically has a

per table, but only one PRIMARY KEY constraint per

�

�

Syntax

ALTER TABLE Persons
ADD UNIQUE (ID);

CREATETABLEPersons (
ID intNOTNULL,

FirstName varchar(255),
LastName varchar(255)NOTNULL,

Age int,
UNIQUE(ID));

SQLPRIMARY KEYConstraint

cannot contain NULL values.

The PRIMARY KEY constraint uniquely identifies
each record in a table.

Primary keys must contain UNIQUE values, and

SQL PRIMARY KEY on CREATE TABLE

ADD PRIMARY KEY (ID);

DROP PRIMARY KEY;

CREATETABLEPersons (
LastName varchar(255)NOTNULL,

Age int,

ID intNOTNULL,

FirstName varchar(255),

PRIMARYKEY(ID));
ALTER TABLE Persons

ALTER TABLE Persons

SQL CHECK Constraint

The CHECK constraint is used to limit the value range
that can be placed in a column.

Example

CHECK(Age>=18));

ADD CHECK (Age>=18);

CREATETABLEPersons (
LastName varchar(255) NOT NULL,ID intNOTNULL,

FirstName varchar(255),
Age int,
ALTER TABLE Persons

SQL DEFAULT Constraint

The DEFAULT constraint is used to provide a default
value for a column.

other value is specified.
Example

The default value will be added to all new records IF no

CREATETABLEPersons (

LastName varchar(255) NOT NULL,

Age int,

ID intNOTNULL,

FirstNamevarchar(255),

City varchar(255)DEFAULT'Sandnes');
ALTER TABLE Persons
ALTER City SET DEFAULT 'Sandnes';

SQLAUTO INCREMENTField

Personid int NOT NULL AUTO_INCREMENT,

FirstName varchar(255),
Age int,

Auto-increment allows a unique number to be generated
automatically when a new record is inserted into a table.

PRIMARY KEY (Personid));

Syntax
CREATETABLEPersons (

LastName varchar(255) NOT NULL,

AUTO INCREMENT

another value, use the following SQL statement:
ALTERTABLEPersons AUTO_INCREMENT=100;

Often this is the primary key field that we would like
to be created automatically every time a new
record is inserted.

To let the AUTO_INCREMENT sequence start with

By default, the starting value for AUTO_INCREMENT is
1, and it will increment by 1 for each new record.

SQL LIKE Operator

with the LIKE operator:
% -The percent sign represents zero, one, or
multiple characters

_ -The underscore represents a single character

The LIKE operator is used in a WHERE clause to
search for a specified pattern in a column.
There are two wildcards often used in conjunction

LIKE Syntax

starting with "a":

SELECTcolumn1, column2, ...
FROMtable_name

WHEREcolumn LIKEpattern;
Examples:

Selects all customers with a CustomerName1.

2.

SELECT * FROM Customers
WHERE CustomerName LIKE 'a%';

Selects all customers with a CustomerNameending with
"a":

SELECT * FROM Customers
WHERE CustomerName LIKE '%a';

3. Selects all customers with a CustomerName
that have “ a " in any position:

WHERE ContactName LIKE 'a%o';

WHERE CustomerName LIKE '_r%';

"a" and are at least 3 characters in length:
SELECT * FROM Customers
6. selects all customers with a ContactName that starts with

SELECT * FROM Customers

4. Selects all customers with a CustomerName that have "r" in

WHERE CustomerName LIKE 'a__%';

"a" and ends with “h":
SELECT * FROM Customers

WHERE CustomerName LIKE '%a%';

the second position:
SELECT * FROM Customers

5. selects all customers with a CustomerName that starts with

The SQL BETWEEN Operator

values are included.

The BETWEEN operator selects values within a given

Example

range. The values can be numbers, text, or dates.

The BETWEEN operator is inclusive: begin and end

SELECT * FROM Products

SELECT column_name(s) FROM table_name
WHERE column_name BETWEEN value1 AND value2;

WHERE Price BETWEEN 10 AND 20;

SQL IN Operator

SELECT * FROM Students
WHEREMarks IN(80,60,50);

The IN operator allows you to specify multiple values in
a WHERE clause.

The IN operator is a shorthand for multiple OR
conditions.

SELECT column_name(s) FROM table_nameWHEREcolumn_nameIN(value1,value2, ...);
Example-

Aggregate functions in SQL

In database management an aggregate function is a
together as input on certain criteria to form a single
value of more significant meaning.

function where the values of multiple rows are grouped

Sum(
)
Avg()

Various Aggregate Functions
Min() 1

.
2
.
3
.
5.

Max()
Count()

4.

The SQL MIN() and MAX() Functions

The MAX() function returns the largest value of the
selected column.
SELECT MAX(column_name)
FROMtable_name
WHERE condition;

The MIN() function returns the smallest value of the
selected column.

SELECT MIN(column_name)
FROM table_name
WHEREcondition;

Example of Min() & Max()

Min(salary):Minimum value

Max(salary):Maximum value

in the salary column
except NULL i.e., 40.

in the salary i.e., 80.

The SQL COUNT() Functions

� The COUNT() function returns the number of rows
that matches a specified criterion.

SELECT COUNT(column_name)
FROMtable_name
WHERE condition;

�Count(*):Returns total number of records .
�

that column.
�

Null values over that column.

Count(column_name):Return number of Non Null values

over Count(Distinct column_name):Return number of

distinct Non

Example of count

�Count(*):Returns total
number of records .i.e6.
�
Count(salary):Return number

of Non Null values over the
column salary. i.e5.
�

Count(Distinct
Salary):Return number of
distinct Non Null values over

the column salary .i.e4

The SQL SUM() Functions

�The SUM() function returns the total sum of a
numeric column.

SELECT SUM(column_name)
FROMtable_name
WHERE condition;
�Sum (colum n_name)
�Sum(Distinct column_name)

Example of Sum():

� sum(salary):Sum all
Non Null values of Column

salary i.e., 310.
�
sum(Distinct

salary):Sum of all distinct
Non-Null values i.e., 250.

The SQL AVG()Functions

�The AVG() function returns the average value of a
numeric column.

SELECT AVG(column_name)
FROM table_name
WHERE condition;
�
Avg(column_name)
�

Avg(Distinct column_name)

Example of AVG():

�Avg(salary)= Sum(salary) /
count(salary) = 310/5
�

Count(Distinct Salary) = 250/4

Avg(Distinct
salary)=
sum(Distinct salary)
/

General Syntax of SQL statements

� SELECT [Distinct] <attribute list>
FROM <TABLE NAME>

[ORDER BY (Attribute) [ASC/Desc]];

�

�

�
[WHERE <condition>]

[GROUP BY (Attribute) [having Condition]]
�

The SQL GROUP BY Statement

columns.

�The GROUP BY statement groups rows that have the
same values into summary rows, like "find the

number of customers in each country".
�
The GROUP BY statement is often used with

aggregate functions (COUNT, MAX, MIN, SUM,
AVG) to group the result-set by one or more

GROUP BY Syntax

� SELECT column_name(s)
FROMtable_name
WHEREcondition
GROUP BY column_name(s)
ORDERBYcolumn_name(s);

SQL GROUP BY Examples

�
customers in each country, sorted high to low:

SELECTCOUNT(CustomerID), Country

GROUP BY Country

�The following SQL statement lists the number of

FROMCustomers

ORDER BY COUNT(CustomerID) DESC;

customers in each country:
SELECTCOUNT(CustomerID), Country
FROMCustomers
GROUP BYCountry;
The following SQL statement lists the number of

SQL HAVING Clause

ORDER BY column_name(s);

� HAVING Syntax
�

SELECT column_name(s)
WHERE condition

�The HAVING clause was added to SQL because the

FROMtable_name

GROUP BY column_name(s)
HAVINGcondition

WHERE keyword could not be used with aggregate
functions.

SQL HAVING Examples

HAVINGCOUNT(CustomerID) >5;

�The following SQL statement lists the number of
customers in each country. Only include
countries with more than 5 customers:

SELECTCOUNT(CustomerID), Country
FROMCustomers

GROUP BY Country

SQL Views

�

�

In SQL, a view is a virtual table based on the result-
set of an SQL statement.
A view contains rows and columns, just like a real
table. The fields in a view are fields from one or more
real tables in the database.
Syntax
�

CREATEVIEWview_nameAS
SELECTcolumn1,column2, ...

FROMtable_name;

Creating a table from another table

Example

Syntax
�

Create table <table name>As < Select Query>;

Create table chotastudent
as select sid, name, marks from student;

Inserting records from another table

where marks>35;

1. Insert into chotastudent
select sid,name,marksfrom student;

�Syntax
Insert into <table name> <a select Query>;�

Example-

2. Insert into chotastudent
select sid,name,marksfrom student

Join

�A join clause is used to fetch data from two or more
tables, based on join condition.
�
A JOIN clause is used to combine rows from two or

more tables, based on a related column between
them.

D

Question 1: Retrieve the sid and department no. of
students whose marks <40;
Select sid, dept no from student where marks<40;

S4

SID
s1

Sname
A

35

SID
S1
S4

Marks
30

D2

Dept No
D1

DEPT NO
D1
D2

D3

Dno

D1

PHY

Dname

CS

RAIPUR

Location

RAIPUR

Question 2: Retrieve the sid and department no. of
students whose marks <40;

S
2
S
3

B
C

4
0
4
5

D2
D1

D2 CHEM DURG

STUDENT DEPARTMENT

Cartesian Product

Student X Department
SID
S1
S1
S1
S2
S2

SNAME
A
A
A
B
B

MARKS DEPTNO DNO 30 D1
D1
30 D1 D2
30 D1 D3
40 D2 D1
40 D2 D2

DNAME LOCATION
CS RAIPUR
CHEM DURG
PHY RAIPUR
CS RAIPUR
CHEM DURG

SQL Aliases

readable.
Aliases can be useful when:

�Column names are big or not very readable.
�

Two or more columns are combined together.

�SQL aliases are used to give a table, or a column in a

There are more than one table involved in a
query. Functions are used in the query.

table, a temporary name.
�
Aliases are often used to make column names more

�

�

Alias Column Syntax

� SELECTSnameASsn, marks ASm

SELECT column_name AS alias_name
FROM table_name;

Alias for Columns Examples

FROM student;

Alias Table Syntax

SELECT column_name(s)
FROM table_name AS alias_name;

Alias for Tables Example
SELECTs.sname, s.marks, d.dname
FROMStudentASs, DepartmentASd
WHERE s.sname=‘A' AND s.deptno=d.dno;

SELECTStudent.sname, Student.marks, department.dname
WHERE Student.sname =‘Ram' AND

FROM Student,department

student.deptno=department.dno;

Different Types of SQL JOINs

Here are the different types of the JOINs in SQL:
1.(INNER) JOIN: Returns records that have matching
values in both tables.
2.LEFT (OUTER) JOIN: Returns all records from the
left table, and the matched records from the right table.
3.RIGHT (OUTER) JOIN: Returns all records from the
right table, and the matched records from the left table.
4.FULL (OUTER) JOIN: Returns all records when there

is a match in either left or right table.

Different Types of SQL JOINs

SQL INNER JOIN Keyword

INNER JOIN Syntax

The INNER JOIN keyword selects records that have
matching values in both tables.

SELECT column_name(s)
FROMtable1
INNER JOIN table2

ON table1.column_name = table2.column_name;

SQL LEFT JOIN Keyword

right side, if there is no match.

SELECT column_name(s)
FROM table1
LEFTJOINtable2

ON table1.column_name = table2.column_name;

The LEFT JOIN keyword returns all records from the

LEFT JOIN Syntax

left table (table1), and the matched records from
the right table (table2). The result is NULL from the

SQL RIGHT JOIN Keyword

�SELECT column_name(s)
FROM table1
RIGHT JOIN table2

ON table1.column_name = table2.column_name;

� The RIGHT JOIN keyword returns all records from
from the left table (table1). The result is NULL from the right table (table2), and the matched

records the left side, when there is no match.
RIGHT JOIN Syntax

SQL FULL OUTER JOIN
Keyword

� FULL OUTER JOIN and FULL JOIN are the same.

� The FULL OUTER JOIN keyword returns all records
when there is a match in left (table1) or right
(table2) table records.

FULL OUTER JOIN Syntax
�
SELECT column_name(s)
FULLOUTER JOINtable2

WHEREcondition;

FROM table1

ON table1.column_name = table2.column_name

SQL Self JOIN

�SELECT column_name(s)
FROMtable1 T1, table1 T2
WHERE condition;
�

T1andT2are different table aliases for the same
table.

�A self JOIN is a regular join, but the table is joined
with itself.

Self JOIN Syntax

SQLFOREIGN KEYConstraint

�A FOREIGN KEY is a key used to link two tables
together.
�

A FOREIGN KEY is a field (or collection of fields) in
one table that refers to the PRIMARY KEY in another
table.
�

The table containing the foreign key is called the child
table, and the table containing the candidate key is
called the referenced or parent table.

Look at the following two tables:

� "Persons" table:

3

2

3

OrderID

PersonI

D 1

Pettersen

LastNam

e Hansen

4467

8

2245

6

OrderNumber

Kari

FirstName

Ola

3

2

PersonID

20

Ag

e

302

4

1

Svendson

77895

24562

Tove

3

1

23

"Orders" table:

actions that would destroy links between tables.
�
The FOREIGN KEY constraint also prevents invalid

because it has to be one of the values contained in the

�Notice that the "PersonID" column in the "Orders" table
points to the "PersonID" column in the "Persons" table.
�The "PersonID" column in the "Persons" table is the
PRIMARY KEY in the "Persons" table.
�
The "PersonID" column in the "Orders" table is a

FOREIGN KEY in the "Orders" table.
�
The FOREIGN KEY constraint is used to prevent

data from being inserted into the foreign key

column, table it points to.

Functional dependency

t1. Y = t2. Y

In a relation R, let these be two attributes X and Y, �
the we can say X->Y (X determines Y or Y

functionally determined by X) exists for any two
tuples t1 and t2 only if they satisfy following
conditions.
�
If t1. X = t2. X then

t2

X
X1
X1

Y
Y
1
Y
1

t2

X
X1
X1

Y
Y
1
Y
2

t1 t1

TABLE 1 Is Functionally Dependent but table 2 is not Functionally Dependent

Find the Functional Dependency in following table

A

2

2

B

3

3

C

8

5

1

3

1

2

1

1

3

1

3

1 4

3

2

6

1

Check Whether
1.A -> B
2.A ->C
3.B -> A
4.C ->A
5.C ->B
6.AB ->C
7.AC ->B
8.BC ->A
9.B -> C
10. C->B
11.A ->BC
12. B->AC
13.C ->AB

Attribute Closure (X)+

�This is the set of attributes determined by X.
Let R(A,B,C,D) �

�

�
A + = { A,B,C,D}
A defines itself.

Trivial Dependency

BC -> C

�Trivial means whose answer is already known to us.
like What is your name Ram?
� Example : A -> A
�

AB -> A
�

Inference Rules

1.Reflexive Rules
if X>= Y then X -> y (Trivial)

5. Additive Rules
if X -> Y AND X -> Z THEN X -> YZ

3. Transitive Rules
if X -> Y and Y->Z then X -> Z will also exist.

4. Decomposition Rules
X -> YZ then X -> Y and X -> Z also .

2. Augmentation Rules –
if X -> Y exists then XZ -> YZ will also exists.

