

LECTURE-5

Basics of C++

C ++ is an object oriented programming language, C ++ was developed by Jarney
Stroustrup at AT & T Bell lab, USA in early eighties. C ++ was developed from c and simula 67
language. C ++ was early called ‘C with classes’.

C++ Comments:

C++ introduces a new comment symbol //(double slash). Comments start with a
double slash symbol and terminate at the end of line. A comment may start any where in the line and
what ever follows till the end of line is ignored. Note that there is no closing symbol.
The double slash comment is basically a single line comment. Multi line comments can be
written as follows:

// this is an example of
// c++ program
// thank you
The c comment symbols /* ….*/ are still valid and more suitable for multi line comments.
/* this is an example of c++ program */

Output Operator:

The statement cout <<”Hello, world” displayed the string with in quotes on the screen. The identifier
cout can be used to display individual characters, strings and even numbers. It is a predefined object
that corresponds to the standard output stream. Stream just refers to a flow of data and the standard
Output stream normally flows to the screen display. The cout object, whose properties are defined in
iostream.h represents that stream. The insertion operator << also called the ‘put to’ operator directs
the information on its right to the object on its left.
Return Statement:

In C++ main () returns an integer type value to the operating system. Therefore every main (
) in C++ should end with a return (0) statement, otherwise a warning or an error might occur.
Input Operator:

The statement
cin>> number 1;
is an input statement and causes. The program to wait for the user to type in a number. The number
keyed in is placed in the variable number1. The identifier cin is a predefined object in C++ that
corresponds to the standard input stream. Here this stream represents the key board.

The operator >> is known as get from operator. It extracts value from the keyboard
and assigns it to the variable on its right.

13

Cascading Of I/O Operator:

cout<<”sum=”<<sum<<”\n”;
cout<<”sum=”<<sum<<”\n”<<”average=”<<average<<”\n”;
cin>>number1>>number2;

Structure Of A Program :

Probably the best way to start learning a programming language is by writing a program.

Therefore,
here is our first program:
// my first program in C++

#include <iostream>
using namespace std;
int main ()
{
cout << "Hello World!";
return 0;
}
Output:-Hello World!
The first panel shows the source code for our first program. The second one shows the
result of the
program once compiled and executed. The way to edit and compile a program depends onthe
compiler you are using. Depending on whether it has a Development Interface or not and on
its
version. Consult the compilers section and the manual or help included with your compilerif you
have doubts on how to compile a C++ console program.
The previous program is the typical program that programmer apprentices write for the
first time,
and its result is the printing on screen of the "Hello World!" sentence. It is one of the simplest
programs that can be written in C++, but it already contains the fundamental components
that every
C++ program has. We are going to look line by line at the code we have just written:
// my first program in C++
This is a comment line. All lines beginning with two slash signs (//) are considered comments
and do
not have any effect on the behavior of the program. The programmer can use them to
include short
explanations or observations within the source code itself. In this case, the line is a brief
description
of what our program is.
#include <iostream>
Lines beginning with a hash sign (#) are directives for the preprocessor. They are not
regular code
lines with expressions but indications for the compiler's preprocessor. In this case the
directive
#include<iostream> tells the preprocessor to include the iostream standard file. This specific
file
(iostream) includes the declarations of the basic standard input-output library in C++, and it is
included because its functionality is going to be used later in the program.
using namespace std;
All the elements of the standard C++ library are declared within what is called a namespace,
the
namespace with the name std. So in order to access its functionality we declare with this

 P.T.O

14

executed in any C++ program. For that same reason, it is essential that all C++ programs have
a main function.
The word main is followed in the code by a pair of parentheses (()). That is because it is a
function declaration: In C++, what differentiates a function declaration from other types of
expressions are these parentheses that follow its name. Optionally, these parentheses may
enclose a list of parameters
within them.
Right after these parentheses we can find the body of the main function enclosed in braces
({}).
What is contained within these braces is what the function does when it is executed.
cout << "Hello World!";
This line is a C++ statement. A statement is a simple or compound expression that can
actually
produce some effect. In fact, this statement performs the only action that generates a visible
effect in
our first program.
cout represents the standard output stream in C++, and the meaning of the entire statement
is to
insert a sequence of characters (in this case the Hello World sequence of characters) into the
standard
output stream (which usually is the screen).
cout is declared in the iostream standard file within the std namespace, so that's why we
needed to
include that specific file and to declare that we were going to use this specific namespace
earlier in
our code.
Notice that the statement ends with a semicolon character (;). This character is used to mark
the end
of the statement and in fact it must be included at the end of all expression statements in
all C++
programs (one of the most common syntax errors is indeed to forget to include some
semicolon after
a statement).
return 0;
The return statement causes the main function to finish. return may be followed by a return
code (in
our example is followed by the return code 0). A return code of 0 for the main function is
generally
interpreted as the program worked as expected without any errors during its execution.
This is the
most usual way to end a C++ console program.
You may have noticed that not all the lines of this program perform actions when the code is
executed. There were lines containing only comments (those beginning by //). There were
lines with
directives for the compiler's preprocessor (those beginning by #). Then there were lines that
began
the declaration of a function (in this case, the main function) and, finally lines withstatements (like
the insertion into cout), which were all included within the block delimited by the braces ({})
of the
main function.
The program has been structured in different lines in order to be more readable, but in
C++, we do
not have strict rules on how to separate instructions in different lines. For example, instead of
int main ()
{
cout << " Hello World!";
return 0;
}

 P.T.O

code in different lines serves only to make it more legible and schematic for the humans that may
read it.

Let us add an additional instruction to our first program:
// my second program in C++
#include <iostream>
using namespace std;
int main ()
{
cout << "Hello World! ";
cout << "I'm a C++ program";
return 0;
}
Output:-Hello World! I'm a C++ program

In this case, we performed two insertions into cout in two different statements. Once again, the
separation in different lines of code has been done just to give greater readability to the program,
since main could have been perfectly valid defined this way:
int main ()
{
cout << " Hello World! ";
cout << " I'm a C++ program ";
return 0;
}

We were also free to divide the code into more lines if we considered it more convenient:
int main ()
{
cout << "Hello World!";
cout << "I'm a C++ program";
return 0;
}
And the result would again have been exactly the same as in the previous examples.
Preprocessor directives (those that begin by #) are out of this general rule since they are not
statements. They are lines read and processed by the preprocessor and do not produce any code by
themselves. Preprocessor directives must be specified in their own line and do not have to end with a
semicolon (;).

STRUCTURE OF C++ PROGRAM

 Include files
 Class declaration
 Class functions, definition
 Main function program

Example :-

include<iostream.h>

class person

15 P.T.O

{
char name[30];
int age;
public:

void getdata(void);
void display(void);

};

void person :: getdata (void)
{
cout<<”enter name”;
cin>>name;

cout<<”enter age”;
cin>>age;
}

void display()
{

cout<<”\n name:”<<name;
cout<<”\n age:”<<age;
}

int main()
{
person p;
p.getdata();
p.display();
return(0);
}

16 P.T.O

TOKENS:

tokens.

LECTURE-6

The smallest individual units in program are known as tokens. C++ has the following

i. Keywords
ii. Identifiers
iii. Constants
iv. Strings
v. Operators

KEYWORDS:

The keywords implement specific C++ language feature. They are explicitly reserved
identifiers and can’t be used as names for the program variables or other user defined program
elements. The keywords not found in ANSI C are shown in red letter.

Asm double new switch

Auto else operator template

Break enum private this

Case extern protected throw

Catch float public try

Char for register typedef

Class friend return union

Const goto short unsigned

Continue if signed virtual

Default inline sizeof void

Delete long struet while

IDENTIFIERS:

Identifiers refers to the name of variable , functions, array, class etc. created by programmer. Each
language has its own rule for naming the identifiers.
The following rules are common for both C and C++.

17 P.T.O

C++ KEYWORDS:

1. Only alphabetic chars, digits and under score are permitted.
2. The name can’t start with a digit.
3. Upper case and lower case letters are distinct.
4. A declared keyword can’t be used as a variable name.

In ANSI C the maximum length of a variable is 32 chars but in c++ there is no bar.

18

 P.T.O

Lecture-7

BASIC DATA TYPES IN C++

C ++ Data Types

User defined type Built in types Derived type
Structure Array
Union Function
Class pointer
enumeration

Integral type void Floating point

int char float double

Both C and C++ compilers support all the built in types. With the exception of void the basic
datatypes may have several modifiers preceding them to serve the needs of various situations. The
modifiers signed, unsigned, long and short may applied to character and integer basic data types.
However the modifier long may also be applied to double.

Data types in C++ can be classified under various categories.

TYPE BYTES RANGE

char 1 -128 to – 127

usigned 1 0 to 265

sgned char 1 -128 to 127

int 2 -32768 to 32768

unsigned int 2 0 to 65535

singed int 2 -32768 to 32768

short int 2 -32768 to 32768

19 P.T.O

long int 4 -2147483648 to 2147483648

signed long int 4 -2147483648 to 2147483648

unsigned long int 4 0 to 4294967295

float 4 3.4E-38 to 3.4E+38

double 8 1.7E -308 to 1.7E +308

long double 10 3.4E-4932 to 1.1E+ 4932

The type void normally used for:

1) To specify the return type of function when it is not returning any value.
2) To indicate an empty argument list to a function.
Example:

Void function(void);

Another interesting use of void is in the declaration of genetic pointer

Example:

Void *gp;

Assigning any pointer type to a void pointer without using a cast is allowed in both C and ANSI C.
In ANSI C we can also assign a void pointer to a non-void pointer without using a cast to non void
pointer type. This is not allowed in C ++.

Example:

void *ptr1;

void *ptr2;

Are valid statement in ANSI C but not in C++. We need to use a cast operator.

ptr2=(char *) ptr1;

STRUCTERS AND CLASSES

We have used user defined data types such as struct,and union in C. While these more features have
been added to make them suitable for object oriented programming. C++ also permits us to define

20 P.T.O

USER DEFINED DATA TYPES:

another user defined data type known as class which can be used just like any other basic data type to
declare a variable. The class variables are known as objects, which are the central focus of oops.

ENUMERATED DATA TYPE:

An enumerated data type is another user defined type which provides a way for
attaching names to number, these by increasing comprehensibility of the code. The enum keyword
automatically enumerates a list of words by assigning them values 0,1,2 and soon. This facility
provides an alternative means for creating symbolic.
Example:

enum shape { circle,square,triangle}

enum colour{red,blue,green,yellow}

enum position {off,on}

The enumerated data types differ slightly in C++ when compared with ANSI C. In C++, the
tag names shape, colour, and position become new type names. That means we can declare new
variables using the tag names.

Example:

Shape ellipse;//ellipse is of type shape

colour background ; // back ground is of type colour

ANSI C defines the types of enums to be ints. In C++,each enumerated data type retains its
own separate type. This means that C++ does not allow an int value to be automatically converted to
an enum.

Example:

colour background =blue; //vaid

colour background =7; //error in c++

colour background =(colour) 7;//ok

How ever an enumerated value can be used in place of an int value.

Example:

int c=red ;//valid, colour type promoted to int

By default, the enumerators are assigned integer values starting with 0 for the first
enumerator, 1 for the second and so on. We can also write
enum color {red, blue=4,green=8};

enum color {red=5,blue,green};

21 P.T.O

C++ also permits the creation of anonymous enums (i.e, enums without tag names)

Example:

enum{off,on};

Here off is 0 and on is 1.these constants may be referenced in the same manner as regular constants.

Example:

int switch-1=off;

int switch-2=on;

ANSI C permits an enum defined with in a structure or a class, but the enum is
globally visible. In C++ an enum defined with in a class is local to that class.

22 P.T.O

LECTURE-8

SYMBOLIC CONSTANT:

There are two ways of creating symbolic constants in c++.

1. using the qualifier const.
2. defining a set of integer constants using enum keywords.
In both C and C++, any value declared as const can’t be modified by the program in any way.

In C++, we can use const in a constant expression. Such as

const int size = 10 ;
char name (size) ;

This would be illegal in C. const allows us to create typed constants instead of having to use #defme to
create constants that have no type information.
const size=10;

Means

const int size =10;

C++ requires a const to be initialized. ANSI C does not require an initializer, if none is given, it
initializes the const to 0.
In C++ const values are local and in ANSI C const values are global .However they can be made local
made local by declaring them as static .In C++ if we want to make const value as global then declare as
storage class.

Ex: external const total=100; Another method
of naming integer constants is as follows:-
enum {x,y,z};

DECLARATION OF VARIABLES:

In ANSIC C all the variable which is to be used in programs must be declared at the beginning of the
program .But in C++ we can declare the variables any whose in the program where it requires .This make
program much easier to write and reduces the errors that may be caused by having to scan back and for
also makes the program easier to understand because the variables are declared in the context of their u

Example:
main()
{
float x,average;
float sum=0;

23 P.T.O

24

for(int i=1;i<5;i++)
{
cin>>x;
sum=sum+x
}
float average;
average=sum/x;
cout<<average;
}

REFERENCE VARIABLES:
C++interfaces a new kind of variable known as the reference variable. A references variable

provides an alias.(alternative name) for a previously defined variable. For example ,if we make the
variable sum a reference to the variable total, then sum and total can be used interchangeably to repres
the variuble.
A reference variable is created as follows:
Synatx: Datatype & reference –name=variable name;
Example:
float total=1500;
float &sum=total;
Here sum is the alternative name for variables total, both the variables refer to the same data object in th
memory .
A reference variable must be initialized at the time of declaration .

Note that C++ assigns additional meaning to the symbol & here & is not an address operator
.The notation float & means reference to float.
Example:

int n[10];
int &x=n[10];
char &a=’\n’;

 P.T.O

LECTURE-9

OPERATORS IN C++ :

C++ has a rich set of operators. All C operators are valid in C++ also. In addition. C++
introduces some new operators.
<< insertion operator

>> extraction operator

: : scope resolution operator

: :* pointer to member declarator

* pointer to member operator

.* pointer to member operator

Delete memory release operator

Endl line feed operator

New memory allocation operator

Setw field width operator

SCOPE RESOLUTION OPERATOR:

Like C,C++ is also a block-structured language. Block -structured language. Blocks and
scopes can be used in constructing programs. We know same variables can be declared in different
blocks because the variables declared in blocks are local to that function.
Blocks in C++ are often nested.
Example:

{
Int x =10;

{
Int x=1; Block2

--------------- Block1

}

}
Block2 contained in block l .Note that declaration in an inner block hides a declaration of the
same variable in an outer block and therefore each declaration of x causes it to refer to a different data o
With in the inner block the variable x will refer to the data object declared there in.

25 P.T.O

In C,the global version of a variable can't be accessed from with in the inner block.

C++ resolves this problem by introducing a new operator :: called the scope resolution
operator .This can be used to uncover a hidden variable.

Syntax: : : variable –name;

Example:
#include <iostrcam.h>

int m=10;
main()
{
int m=20;
{
int k=m;
int m=30;
cout<<”we are in inner block”;
cout<<"k="<<k<<endl;
cout<<"m="<<m<<endl;
cout<<":: m="<<:: m<<endl;
}
cout<<”\n we are in outer block \n”;
cout<<"m="<<m<<endl;
cout<<":: m="<<:: m<<endl;
}

C uses malloc and calloc functions to allocate memory dynamically at run time . Similarly it uses the func
Free() to free dynamically allocated memory. We use dynamic allocation techniques when it is not know
advance how much of memory space as needed .

C++ also support those functions it also defines two unary operators new and delete that
perform the task of allocating and freeing the memory in a better and easier way.
The new operator can be used to create objects of any type. Syntax: pointer-

variable =new datatype;

Example:
p=new int; q=new int;
Where p is a pointer of type int and q is a pointer of type float.

int *p=new int;

float *p=new float;

Subsequently, the statements

*p=25;

26 P.T.O

Memory Management Operator

form of delete. If we want

27

to free a dynamically allocated array ,we must use

*q=7.5;
Assign 25 to the newly created int object and 7.5 to the float object.We can also initialize the memory
using the new operator.

Syntax:
int *p=ne\v int(25);
float *q =new float(7.5);
new can be used to create a memory space for any data type including user defined such as
arrays,structures,and classes .The general form for a one-dimensional array is:

pointer-variable =new data types [size];

creates a memory space for an array of 10 integers.

If a data object is no longer needed, it is destroyed to release the memory space for reuse.

Syntax: delete pointer-variable;

Example:
delete p;
delete q;

delete [size] pointer-variable;
or

delete [] pointer variable;

MANIPULATERS:

Manipulators are operator that are used to format the data display. The most commonly manipulators ar
endl and setw.
The endl manipulator, when used in an output statement, causes a line feed to be insert.(just like \n)

Example:
cout<<”m=”<<m<<endl;
cout<<”n=”<<n<<endl;
cout<<”p=”<<p<<endl;
If we assume the values of the variables as 2597,14 and 175 respectively
m=2597; n=14;
p=175
It was want to print all nos in right justified way use setw which specify a common field width
for all the nos.

Example: cout<<setw(5)<<sum<<endl;
 cout<<setw(10)<<”basic”<<setw(10<<basic<<endl;

Cout<<setw(10)<<”allowance”<<setw(10<<allowance<<endl;
cout<<setw(10)<<”total=”<<setw(10)<<total;

the following

 P.T.O

28

LECTURE-10

CONTROL STRUCTURES:

Like c,c++, supports all the basic control structures and implements them various control statements.

The if statement:

The if statement is impklemented in two forms:

1. simple if statement

2. if… else statement

Simple if statement:

if (condition)

{

Action;

}

If.. else statement

If (condition)

Statment1

Else

Statement2

The switch statement

This is a multiple-branching statement where, based on a condition, the control is transferred to one of t
possible points;

 P.T.O

Switch(expr)

{

case 1:

action1;

break;

case 2:

action2;

break;

..

..

default:

message

}

The while statement:

Syn:

While(condition)

{

Stements

}

29 P.T.O

The do-while statement:

Syn:

do

{

Stements

} while(condition);

The for loop:

for(expression1;expression2;expression3)

{

Statements;

Statements;

}

30

 P.T.O

LECTURE-11

FUNCTION IN C++ :

The main() Functon ;
ANSI does not specify any return type for the main () function which is the starting point for the executio
of a program . The definition of main() is :-

main()
{
//main program statements
}

This is property valid because the main () in ANSI C does not return any value. In C++, the main () return
type int to the operating system. The functions that have a return value should use the return statement
The main () function in C++ is therefore defined as follows.

int main()
{

return(0)
}
Since the return type of functions is int by default, the key word int in the main() header is optional.

INLINE FUNCTION:

To eliminate the cost of calls to small functions C++ proposes a new feature called inline function.
An inline function is a function that is expanded inline when it is invoked .That is the compiler
replaces the function call with the corresponding function code.
The inline functions are defined as follows:-
inline function-header
{
function body;
}
Example: inline double cube (double a)
{
return(a*a*a);
}
The above inline function can be invoked by statements like
c=cube(3.0);
d=cube(2.5+1.5);
remember that the inline keyword merely sends a request, not a command to the compliler. The
compiler may ignore this request if the function definition is too long or too complicated and compile
the function as a normal function.
Some of the situations where inline expansion may not work are:
1. For functions returning values if a loop, a switch or a go to exists.

31 P.T.O

Example:

2. for function s not returning values, if a return statement
exists. 3. if functions contain static variables.
4. if inline functions are recursive,.

#include<iostream.h>
#include<stdio.h>
inline float mul(float x, float y)
{
return(x*y);
}
inline double div(double p.double q)
{
return(p/q);
}

main()
{
float a=12.345;
float b=9.82;
cout<<mul(a,b)<<endl;
cout<<div (a,b)<<endl;
}

output:-
121.227898
1.257128
DEFAULT ARGUMENT:-
C++ allows us to call a function with out specifying all its arguments.In such cases, the
function assigns a default value to the parameter which does not have a matching aguments in the
function call.Default values are specified when the function is declared .The compiler looks at the
prototype to see how many arguments a function uses and alerts the program for possible default
values.
Example: float amount (float principle, int period ,float rate=0.15);
The default value is specified in a manner syntactically similar to a variable
initialization .The above prototype declares a default value of 0.15 to the argument rate. A
subsequent function call like
value=amount(5000,7); //one argument missing
passes the value of 5000 to principle and 7 to period and then lets the function, use default value of
0.15 for rate.
The call:- value=amount(5000,5,0.12);
//no missing argument passes an explicite value of 0.12 rate.
One important point to note is that only the trailing arguments can have default values. That is, we
must add default from right to left .We cannot provide a default to a particular argument in the
middle of an argument list.
Example:- int mul(int i, int j=5,int k=10);//illegal
int mul(int i=0,int j,int k=10);//illegal
int mul(int i=5,int j);//illegal
int mul(int i=2,int j=5,int k=10);//illegal
Default arguments are useful in situation whose some arguments always have the some value.
For example,bank interest may retain the same for all customers for a particular period of deposit.

32 P.T.O

Example:
#include<iostream.h>
#include<stdio.h>
mainQ
{
float amount;
float value(float p,int n,float r=0.15);
void printline(char ch=’*’,int len=40);
printline();
amount=value(5000.00,5);
cout<<”\n final value=”<<amount<<endl;
printline(‘=’);
//function definitions
float value (float p,int n, float r)
{
float si;
si=(p*n*r)/100;
return(si);
}
void printline (char ch,int len)
{
for(inti=l;i<=len;i++)
cout<<ch<<endl;
}
output:-
* * * * * * * * * * * * * * * *
final value=10056.71613
= = = = = = = = = = = = = = =
Advantage of providing the default arguments are:
1. We can use default arguments to add new parameters to the existing functions.
2. Default argument s can be used to combine similar functions into one.

CONST ARGUMENT:-
In C++, an argument to a function can be declared as unit as const as shown
below.
int strlen(const char *p);
int length(const string &s);
The qualifier const tells the compiler that the function should not modify the argument .the
compiler will generate an error when this condition is violated .This type of declaration is significant
only when we pass arguments by reference or pointers.

33 P.T.O

LECTURE-12

FUNCTION OVERLOADING:

Overloading refers to the use of the same thing for different purposes . C++ also
permits overloading functions .This means that we can use the same function name to creates
functions that perform a variety of different tasks. This is known as function polymorphism in oops.

Using the concepts of function overloading , a family of functions with one function
name but with different argument lists in the functions call .The correct function to be invoked is
determined by checking the number and type of the arguments but not on the function type.

For example an overloaded add() function handles different types of data as shown
below.
//Declaration
int add(int a, int b); //prototype 1
int add (int a, int b, int c); //prototype 2
double add(double x, double y); //prototype 3
double add(double p , double q); //prototype 4

 //function call
cout<<add(5,10); //uses prototype 1
cout<<add(15,10.0); //uses prototype 4
cout<<add(12.5,7.5); //uses prototype 3
cout<<add(5,10,15); //uses prototype 2
cout<<add(0.75,5); //uses prototype 5
A function call first matches the prototype having the same no and type of arguments and then calls
the appropriate function for execution.
The function selection invokes the following steps:-

a) The compiler first tries to find an exact match in which the types of actual
arguments are the same and use that function .
b) If an exact match is not found the compiler uses the integral promotions to the actual
arguments such as :
char to int
float to double
to find a match
c)When either of them tails ,the compiler tries to use the built in conversions to the actual
arguments and them uses the function whose match is unique . If the conversion is possible to have
multiple matches, then the compiler will give error message.
Example:
long square (long n);
double square(double x);
A function call such as :- square(lO)
Will cause an error because int argument can be converted to either long or
double .There by creating an ambiguous situation as to which version of square()should be used.

34 P.T.O

35

PROGRAM

#include<iostream.h>
int volume(double,int);
double volume(double , int);
double volume(longint ,int ,int);
main()
{
cout<<volume(10)<<endl;

cout<<volume(10)<<endl; cout<<volume(10)<<endl;
}
int volume(ini s)
{
return (s*s*s); //cube
}
double volume(double r, int h)
{
return(3.1416*r*r*h); //cylinder
}
long volume (longint 1, int b, int h)
{
return(1*b*h); //cylinder
}

output:- 1000
157.2595

112500

 P.T.O

