

1.1 Introduction

Calculus is that branch of Mathematics, in which we study the variable quantities. It has two branches: Differential Calculus and Integral Calculus. In differential calculus we study the problems related with the rate of change of quantities.

1.2 QUANTITIES

- (i) Variable: A quantity used in a mathematical operation which can take any value from a particular set is called variable quantity. It is denoted by x, y, z.
- (ii) Constant: A quantity whose value does not change in a mathematical operation is called constant. It is denoted as a, b, c.
- (iii) Interval: The set of all real numbers lying between two real numbers a and b (a < b) is called an interval. Length of the interval is b a.
- (a) Open interval:— The interval in which terminal points a and b are not included is called open interval. It is denoted as (a, b) and is equal to $\{x : a < x < b\}$.
- (b) Closed interval:— The interval in which terminal point a and b are included is called closed interval. It is denoted as [a, b] and is equal to $\{x : a \le x \le b\}$.
- (c) Semi closed and semi open interval:— That interval in which one terminal point is not included is known as semi closed and semi open interval. It is denoted as $[a, b] = \{x : a \le x \le b\}$ (left closed and right open) or $(a, b] = \{x : a \le x \le b\}$

1.3 Function

A function defined from a set A to a set B is a rule which associates each element of set A (say x) to some unique element of set B (say f(x)) and it is written as $f: A \to B$.

If an element $a \in A$ is related to some element $b \in B$ under the function f then it is written as b = f(a). 'b' is said to be f-image of 'a' and 'a' is said to be pre image of 'b'.

Domain, Co-domain and Range of a function and the set of f-images of elements of A is called range of f. If $f: A \to B$ be a function then A is called domain, B is called co-domain of f

Range = $\{f(a): f(a) \in B, \forall a \in A\}$

x = a and if f(a) is not a real number then f is said to be undefined at x = a. value of the function f(a) be a real number then function is said to be defined at Defined and Undefined function :- If f(x) be a function of x, at x = a the

Even and Odd function A function f(x) is said to be an even function if for all **Example:** The function $f(x) = \sqrt{4-x^2}$ will be defined if $-2 \le x \le 2$.

and an odd function if f(-x) = -f(x)f(-x) = f(x)

Illustrative Examples

 \square Example 1. If $f(x) = \sqrt{25-x^2}$ then find the value of f(3), f(-4) and

Solution:

$$f(3) = \sqrt{3} + (3)^2 = 4$$

$$f(-4) = \sqrt{25 - (-4)^2} = 3$$

$$f(-4) = \sqrt{25 - (-4)^2} = 3$$

$$f(-4) = \sqrt{25 - (-4)^2} = 3$$

$$x^2 \le 25$$

$$x^2 \le 25$$

$$x \in [-5, 5]$$

$$Domain of $f(x) = [-5, 5]$

$$Example 2. For what values of x the function $f(x) = [-5, 5]$$$$$

 \square Example 2. For what values of x the function $f(x) = \sqrt{\log \left(\frac{5x - x^2}{6}\right)}$ will be defined?

Solution:
$$f$$
 will be defined if $\log \left(\frac{5x-x^2}{6}\right) \ge 0 \Rightarrow \frac{5x-x^2}{6} \ge 1$

$$\therefore \qquad 5x-x^2 \ge 6$$

$$\Rightarrow \qquad x^2-5x+6 \le 0$$

$$\Rightarrow \qquad (x-2)(x-3) \le 0$$

$$\therefore x \in [2,3]$$

□ Example 3. Find the range of the function $f(x) = \frac{x}{1+x^2}$. Solution: Let f(x) = y

92- (sumofreot) of Bodict Of ort

FUNCTIONS

 $\Rightarrow \frac{1+x^2}{1+x^2} = y$ $\Rightarrow x^2y - x + y = 0$

For real value of x, $1 - 4y^2 \ge 0$

 $(1-2y)(1+2y) \ge 0$

 $\frac{1}{2} \le y \le \frac{1}{2}$

 $\therefore \text{ Range} = \begin{bmatrix} -\frac{1}{2}, \frac{1}{2} \end{bmatrix}$

Example 4. If $f(x) = e^x$ then prove that

 $f(x+y)=f(x)\cdot f(y)$

Solution: ..

 $f(x+y) = e^{x+y} = e^x \cdot e^y$ $f(x) = e^x$ $=f(x) \cdot f(y)$

 \square Example 5. If $f(x) = \begin{cases} x^2 - 2 \\ -2 \end{cases}$, $-2 \le x \le 3$ then find the value of 2x+33x-1, x > 3

Solution: ::

.. Using

 $f(x) = x^2 - 2$ $2 \in [-2, 3]$

 $f(2) = (2)^2 - 2 = 2$

D Example 6. Find the domain and range of the following function

 $f(x) = \frac{ax+b}{ax+b}$

[R.U. 2015]

Solution: Domain: f(x) will be undefined if cx - d = 0 or x = d/c so domain of $f = R - \{d/c\}$

Range: If f(x) = y

ax + b = y(cx - d)

x(cy-a)=dy+b

 $x = \frac{dy + b}{}$

x will be undefined if cy - a = 0 or y = a/c

 \therefore Range of $f = R - \{a/c\}$

2

1. If $f(x) = \log \frac{1+x}{1-x}$ then show that

$$f(a) + f(b) = f\left(\frac{a+b}{1+ab}\right)$$

2. If $f(x) = \frac{1-x^2}{1+x^2}$, then show that

$$f(\tan \theta) = \cos 2\theta$$

3. If $y = f(x) = \frac{5x+3}{4x-5}$, then show that

$$x = f(y)$$

A. If $f(x) = \log\left(\frac{x}{x-1}\right)$, then show that $f(x+1) + f(x) = \log\left(\frac{x+1}{x-1}\right)$

5. Find whether the following functions are even or odd:

(i) $f(x) = x^3 - 4x - \frac{4}{x} + \frac{1}{x^3}$ (ii) $f(x) = \log\left(x + \sqrt{x^2 + 1}\right)$ (iii) $f(x) = x \left(\frac{a^x - 1}{a^x + 1} \right)$

(iv) $f(x) = \sin x + \cos x$

6. Find the domain of

(ii) $f(x) = \frac{1}{\sqrt{4-x^2}}$ (iv) $f(x) = \log_e \left(\sqrt{x-4} + \sqrt{6-x} \right)$

(i) $f(x) = \frac{x}{3x-4}$ (ii) $f(x) = \sqrt{x-\sqrt{1-x^2}}$ Find the range of:

(ii) $f(x) = \frac{x^2 - x + 1}{x^2 + x + 1}$

(iii) $f(x) = e^x + e^{-x}$

(i) $f(x) = \frac{2+x}{2-x}$

ANSWERS 1.1

5. (i) odd

(iii) even

(iv) Niehter odd nor even (II) odd

6. (i) $R - \left\{ \frac{4}{3} \right\}$

(ii) [4, 6]

7. (i) R - {-1}

(III) $(-\infty, \infty)$

FUNCTIONS

1.4 Graphs of Real Functions

[n.u. 2016]

(1) Constant function :- If range of a function is constnt then it is called a constant function such as y = f(x) = c where c is constant

Constant function Fig. 1.1

(2) Identity function :- The function f(x) = x, $\forall x \in \mathbb{R}$ is called identity

 $f(x) \begin{vmatrix} -2 & -1 & 0 & 1 & 2 \end{vmatrix}$ -2 -1 0 1 2

(3) Modulus function :- The function defined as

 $f(x) = |x| = \begin{cases} x & \text{when } x \ge 0 \end{cases}$

called modulus function. f(x) 2 1 0 1 2x -2 -1 0 1 2 $\left(-x \text{ when } x < 0\right)$ is

 $f(x) = \begin{cases} \frac{|x|}{x}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$ is called Signum function. $\begin{cases} 0 & \text{when } x=0 \end{cases}$ 1 when x>0-1 when x<0x -3 -2 -1 0 1 2 3

Fig. 1.4: Signum function

 $f(x) \begin{vmatrix} -1 & -1 & -1 & 0 & 1 & 1 & 1 \end{vmatrix}$

Fig. 1.2 Identity function

(5) Greatest Integer function: The function defined as [x] = greatest integer < x is called the greater integer function.

For example
$$\left[-\frac{5}{3}\right] = -2$$
 and $\left[\frac{5}{3}\right] = 1$

For example
$$\left[-\frac{5}{3} \right] = -2$$
 and $\left[\frac{5}{3} \right] = 1$
Note : (i) $[x] \le x$ (ii) $[x] + 1 > x$

Fig. 1.5: Greatest Integer function

(6) Trigonometric function :-

$$(1) J(x) = \sin x$$

Domain = R and Range = [-1, 1]

Fig. 1.6: Trigonometric function $f(x) = \sin x$

Domain = R and Range = [-1, 1]

Fig.-1.7: Trignometric function $f(x) = \cos x$

FUNCTIONS

 $(3) f(x) = \tan x$

Domain =
$$R - \left\{ \frac{(2n+1)\pi}{2}, n \in \mathbb{Z} \right\}$$

and Range = R

Fig.-1.8: Trignometric function $f(x) = \tan x$

 $(4) f(x) = \operatorname{cosec} x$

Domain = $R - \left\{ \frac{n\pi}{2} \mid n \in \mathbb{Z} \right\}$ and Range = R - (-1, 1)

Fig.-1.9: Trignometric function $f(x) = \operatorname{cosec} x$

 $(5) f(x) = \sec x$

Domain =
$$R - \left\{ \frac{(2n+1)}{2} / n \in \mathbb{Z} \right\}$$
 and Range = $R = (-1, 1)$

Fig.-1.10: Trignometric function $f(x) = \sec x$

0

 $(6) f(x) = \cot x$

Domain = $R - \{n\pi \mid n \in Z\}$

and Range = R

(4) $f(x) = \cot^{-1} x$

Fig.1.14: Inverse Trignometrical function $f(x) = \tan^{-1} x$

Domain = R

Fig.-1.11: Trignometric function $f(x) = \cot x$

(7) Inverse Trignometrical functions (1) $f(x) = \sin^{-1} x$

Domain =
$$[-1, 1]$$

and Range = $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $(1, -\pi/2)$

$$x = \frac{\pi^2}{0}$$
 $(1, -\pi^2)$

(2)
$$f(x) = \cos^{-1} x$$

Domain = [-1, 1]

and Range = $[0, \pi]$

 $(0, \pi)$

function $f(x) = \sin^{-1} x$

Fig. 14.12 : Inverse Trignometrical

(5) $f(x) = \csc^{-1} x$ Domain = R - (-1, 1)

(3) $f(x) = \tan^{-1} x$

Fig.1.13: Inverse Trignometrical function $f(x) = \cos^{-1} x$

(1,0)

Domain = R

and Range =

 $\left(\frac{\pi}{2},\frac{\pi}{2}\right)$

Fig.1.16: Inverse Trignometrical function $f(x) = \csc^{-1} x$

BASIC MATHEMATICS

(6) $f(x) = \sec^{-1} x$ and Range = $[0, \pi] - {\pi/2}$ Domain = R - (-1, 1)

(8) Hyperbolic Functions Fig.1.17: Inverse Trignometrical function $f(x) = \sec^{-1} x$

 $(1) f(x) = \sin hx$

and Range = $(-\infty, \infty)$ Domain = $(-\infty, \infty)$

Fig. 1.18: Hyperbolic Function $f(x) = \sin hx$

 $(2) f(x) = \cos hx$

and Range = $[1, \infty)$ Domain = $(-\infty, \infty)$

 $(3) f(x) = \tan hx$ and Range = (-1, 1)Domain = $(-\infty, \infty)$ Fig. 1.19: Hyperbolic Function $f(x) = \cos hx$

FUNCTIONS

Fig. 1.20: Hyperbolic Function $f(x) = \tan hx$

(9) Logarithmic Functions (1) $f(x) = \log_a x \ (a > 1)$ Domain = R^+

and Range = R

(2) $f(x) = \log_a x \ (a < 1)$ Domain = R^+ Fig.-1.21 : Logarithmic Function $f(x) = \log_a x \ (a > 1)$

and Range = R

(10) Exponential Functions Fig.1.22: Logarithmic Function $f(x) = \log_a x$ (a < 1)

 $(1) f(x) = a^x, (a > 1)$

Domain = R

Range = R^+

Fig.1.23: Exponential Function $f(x) = a^x (a > 1)$

(2)
$$f(x) = a^x$$
, $(0 < a < 1)$
Domain = R

Range = R^+

Fig. 1.24: Exponential Function $f(x) = a^x (0 < a < 1)$

Illustrative Examples

Example 7: Draw the graph of the function y = |x - 2| + |x - 3| in the

Solution :

interval [-4, 4].

$$y = \begin{cases} -x+2-x+3; & -4 \le x < 2 \\ x-2-x+3; & 2 \le x < 3 \end{cases}$$

$$x-2+x-3; & 3 \le x \le 4 \end{cases}$$

$$= \begin{cases} 5-2x; & -4 \le x < 2 \\ 1; & 2 \le x < 3 \end{cases}$$
Tabulating the values of x and y.

FUNCTIONS

 3	-	-	-	w	S	7	9	=	13	4
0.0	0	60		,	0	,				l

Following is the graph

Fig. 1.25

 \square Example 8: Draw the graph of $f(x) = \cos \frac{x}{2}$ in the interval $[-2\pi, 2\pi].$

Solution: Tabulating the values of x and y

<u>-1</u>	0	$\frac{1}{2}$	T	2	0	2	1	(x)
$-\frac{4\pi}{3}$	π-	$-\frac{2\pi}{3}$	2π	$\frac{4\pi}{3}$	Ħ	$\frac{2\pi}{3}$	0	×

Following graph is obtained

FUNCTIONS

Exercises 1.2

- 2. Draw the graph of function $y = 3 \cos 2x$ when $x \in [-\pi, \pi]$ 1. Draw the graph of function $y = 2 \cos x$ when $x \in [-2\pi, 2\pi]$
- 3. Draw the graph of function $f(x) = -\sqrt{4-x^2}$

-x, $-4 \le x < 0$

4. Draw the graph of function f(x) =2-x, $1< x \le 4$ $0 \le x \le 1$ in the interval [-4, 4]

5. Draw the graph of function f(x) = |x| + |x - 1| when $-3 \le x \le 3$

Answers 1.2

25

252

Functions and Binary Operations

2.1 Functions

B is called a function or a mapping from A to B and we write which associates to each element $x \in A$, a unique element denoted by f(x) of Let A and B be two non empty sets. Then a rule or a correspondence f

 $f: A \to B$

image of f(x) under f. The element f(x) of B is called the image of x under f while x is called pre

if every element of set A has one and only one image in set B. In other words a relation f from a set A to a set B is said to be a function

2.2 Demain, Co-domain and Range of Functions:

as the co-domain of f. The set f of all f-images of elements of A is known as the image of f or image set of A under f and is denoted by f(A). Let $f: A \to B$, then the set A is known as the domain of f and B is known

Thus, $f(A) = \{f(x) : x \in A\} = \text{range of } f$ clearly $f(A) \subseteq B$: $x \in A = \text{co-domain of } f$

2.3 Various Type of Functions

One-one function (injection): Let $f: A \to B$ then f is said to be one-one function or an injection if different elements of A have different of A have the same image in B. Then f is said to be many one. Many one function: Let $f: A \to B$ If two or more than two elements

Thus $f: A \to B$ is one one $\Leftrightarrow a \neq b \Rightarrow f(a) = f(b) \ \forall \ a, b \in A. \Leftrightarrow$

at least one pre-image in A then f is said to be an onto function. Onto function (Surjection): Let $f: A \to B$ if every element in B has

Thus $f: A \to B$ is a surjection iff for each $b \in B \ni a \in A$ such that

Into function: Let $f: A \to B$ if there exists even a single element in f(a) = b clearly, f is onto \Leftrightarrow range (f) = B = codomain <math>f.

B having no. preimage in A. Then f is said to be an into function bijective. A bijective function is also known as a one to one Bijective Function :- A one-one and onto function is said to be

i.e. $f(x) = f(y) \Rightarrow x = y \ \forall \ x, \ y \in A$ In other words, a function $f: A \to B$ is a bijective if (i) it is one-one

correspondence.

(ii) it is onto i.e. $\forall y \in B$, there exists $x \in A$ such that f(x) = y.

Constant function: Let $f: A \to B$ defined in such a way that all the element in A have the same image in B, then f is said to be a constant function.

on A. This is clearly a one-one onto function with domain A and range defined by $I_A: A \to A: I_A(x) = x \ \forall \ x \in A$ is called an identity function Identity function: Let A be a non empty set then the function IA

as f = g if they have the same domain and they satisfy the condition Equal Function: Two functions f and g are said to be equal, written $f(x) = g(x) \ \forall \ x \text{ in domain of } f(\text{or } g)$

2.4 Composite of functions & Invertible function :

functions f and g denoted by gof is a function from A to C given by Let $f: A \to B$ and $g: B \to C$ be two function then composite of the

 $gof: A \rightarrow C (gof) (x) = g[f(x)]$

obviously gof is defined if range of $f \subset \text{domain of } g$.

as f^{-1} . such that $gof = I_X$ and $fog = I_Y$. Function g is called inverse of f and it is denoted A function $f: X \to Y$ is set to be Invertible if another function $g: Y \to X$ exists

A function f is invertible if and only if it is one-one and onto

A function f is involved and g whereas $f \circ g$ is composite of g and g whereas $f \circ g$ is composite of g and g whereas $f \circ g$ is composite of g and g whereas $g \circ g$ is composite of g and g whereas $g \circ g$ is composite of g and g whereas $g \circ g$ is composite of g and g whereas $g \circ g$ is composite of g and g whereas $g \circ g$ is composite of g and g whereas $g \circ g$ is composite of g and g whereas $g \circ g$ is composite of g and g whereas $g \circ g$ is composite of $g \circ g$ and $g \circ g$ is composite of $g \circ g$ and $g \circ g$ and $g \circ g$ is composite of $g \circ g$ and $g \circ g$ and $g \circ g$ is composite of $g \circ g$ and $g \circ g$ are $g \circ g \circ g$ and $g \circ g$ and $g \circ g \circ g$ and g

or $R_f \subseteq D_g$. 2. gof is undefined if $R_f \cap D_g = \phi$ or gof is defined if $R_f \cap D_g *_{\phi}$

3. $D_{gof} = D_f \text{ if } D_g = R$

exists then gof may or may not exist and vice versa. $D_{gof} = D_f \text{ if } R_f \subset D_g$ In general $D_{gof} = \{x \in D_f \text{ and } f(x) \in D_g\}$ In general $\nu_{gof} - \nu_{gof}$ and fog is independent of each other i.e. if f_{og} . The existence of fog and fog is independent of each other i.e. if f_{og} .

In general gof ≠ fog

(fog) oh = fo (goh) (Associative law)

10. If gof is one-one then f is one-one and if gof is onto then g is onto If $f: R \to R$, $g: R \to R$ then fog, gof, gog are all defined from $R \to R$

2.5 Binary Operations :

ments of the set. Definition. : An operation over a set is a rule which combines any two ele-

An operation 'O' is called a binary operation on set A if $aob \in A \ \forall \ a, b \in A$

2.6 Types of Binary Operations

(i) Associative binary operation: The binary operation 'o' on a set A is said to Let A be a non empty set and '0' be a binary operation defined on A.

be associative, if (aob)oc = ao(boc), $\forall a, b, c \in A$.

(ii) Commutative Binary operation: The binary operation 'o' on a set A is said to be commulative if $aob = boa \ \forall \ a, b \in A$

(iii) Identity element of set w.r. to binary operation : An element $b \in A$ is said to be an inverse of element a of set A. w.r.t the binary operation 'o'

where e is an identity element of set A.

Theorem 1:- Prove that the identity element of set A. w.r.t the binary opera-

Also $e_2 \in A$ and e_1 is identity element of A $e_1 \circ e_2 = e_1 = e_2 \circ e_1$

...(E)

Now $e_1 \in A$ and e_2 is identity element of A**Proof:** If possible suppose there exist two identity elements e_1 and e_2 of set A

FUNCTIONS AND BINARY OPERATIONS

: (E)

So, identity element of set A w.r.t 'o' is unique e2 0 e1 = e2 = e1 0 e2 $e_1 = e_1 \circ e_2 = e_2$ [using (i) and (ii)]

binary operation 'o' with identity element e is unique **Theorem 2:** Prove that inverse of an element a of set A w.r.t. the associative

Proof: If possible suppose $a \in A$ has two inverses b and b'

b' is inverse of a w.r.t 'o' b is inverse of a w.r.t 'o' ₩ Ų. $aob' = e = b'oa \text{ (def.)} \dots (2)$ aob = e = boa (def.)....(1)

b = boe = bo (aob')

= eob'

Now,

= (boa) ob'

[: 'o' is associative [using (1)] [using (2)

The inverse of a is unique.

Examples of Binary Operations :

(i) Addition is a binary operation on the sets N, Z, Q, R, C N = Set of natural number

Z = Set of integers

Q =Set of all rational numbers R = Set of all real numbers

C =Set of all complex numbers

Reason, let $a, b \in N$ Then $a+b \in N$

each is closed w.r.t. addition operation '+'. Thus addition is a binary operation on N, Z, Q, R, C each. Hence N, Z, Q, R, C

(ii) Subtraction is not a binary operation on N, because 3, $7 \in N$ but $3 - 7 \in N$

(iii) Subtraction is a binary operation on Z, Q, R, C each.

(iv) Multiplication is a binary operation on N, Z, Q, R, C each

(v) Division is a binary operation on $Q - \{0\}$, $R - \{0\}$

(vi) Division is not a binary operation on N, Z, Q, R, C

Illustrative Examples

 $B \times A$ such that f(a, b) = (b, a) is a bijective function \blacksquare Example 1. Let A and B be two sets, show that $f: A \times B$ $(b_1, a_1) = (b_2, a_2) \Rightarrow b_1 = b_2 \text{ and } a_1 = a_2$ $(a_1, b_1) = (a_2 b_2)$ Sol. Injective ie. one-one $f(a_1, b_1) = f(a_2 b_2)$ $f(a_1, b_1) = f(a_2 b_2)$ Let (a_1, b_1) and $(a_2 b_2) \in A \times B$ such that

 $f(a_1, b_1) = f(a_2, b_2) \Rightarrow (a_1, b_1) = (a_2, b_2) \ \forall \ (a_1, b_1) \ (a_2, b_2) \in A \times B$

Hence f is an injective map i.e. f is one-one

Surjective i.e. onto:

 $\therefore b \in B \text{ and } a \in A \implies (a, b) \in A \times B$ Let (b, a) be any arbitrary element of $B \times A$

 $f: A \to B \to B \times A$ is an onto function So \forall $(b, a) \in B \times A$, \exists $(a, b) \in A \times B$ such that f(a, b) = (b, a)

Hence f is a bijective function i.e. bijection.

Example 2 Let $A = R - \{2\}$ and $B = R - \{1\}$ if $f : A \rightarrow B$ is a

mapping defined by $f(x) = \frac{x-1}{x-2}$ show that f is bijective

Sol. Injectivity: Let x, y be any two elements of A

$$f(x) = f(y) \Rightarrow \frac{x-1}{x-2} = \frac{y-1}{y-2}$$

 \Rightarrow (x-1)(y-2)=(x-2)(y-1)

Thus $f(x) = f(y) \implies x = y \quad \forall x, y \in A \text{ so, } f \text{ is an injective map.}$ $\Rightarrow xy - y - 2x + 2 = xy - x - 2y + 2 \Rightarrow x = y$

Surjectivity: Let y be an arbitrary element of B, then $f(x) = y \Rightarrow \frac{x-1}{x-2} = y$

 $x-1=y(x-2) \Rightarrow x=\overline{1-y}$ $x = \frac{1-2y}{1-y}$ is a real number $\forall y \neq 1$

clearly

for if we take $\frac{1-2y}{1-y} = 2$ then we get 1 = 0 which is wrong. Thus every $x = \frac{1 - 2y}{1 - y} \neq 2 \text{ for any } y,$

element y in B has its pre image x in A given by

 $x = \frac{1-2y}{1-y}$ and $f(x) = \left(\frac{1-2y}{1-y}\right)$ $\left(\frac{\overline{1-2y}}{1-y}-2\right) = \frac{-y}{-1} = y \text{ so } f \text{ is}$

Hence f is a bijective map ie, both one-one and onto.

FUNCTIONS AND BINARY OPERATIONS are (a) one to one (b) onto \blacksquare Example 3. Determine which of the following function $f:R \to R$

(ii) $f(x) = x^3$

(i) f(x) = x + 1

(iii) f(x) = |x| + x

(iv) $fx =\begin{cases} 1 & \text{if } x - \text{is rational} \\ -1 & \text{if } x - \text{irrational} \end{cases}$

Note: For onto functions range (f) = co-domain (f)

Sol. (i) f(x) = x + 1(a) Injectivity i.e. one to one

Let x and y be two arbitrary elements of domain (f) = R such that $= f(x) = f(y) \Rightarrow x + 1 = y + 1 \Rightarrow x = y$

: f is one-one function.

(b) subjectivity ie onto

Now $y = f(x) = x + 1 \implies x = y - 1 \in R$ Let y be an element of co-domain (f) = R

 \therefore \forall $y \in$ co domain $(f) = R \exists$

x = y - 1 in domain (f) = R such that

$$f(x) = f(y - 1) = (y - 1) + 1$$

 $f(x) = y$

Hence $f: R \to R$ is an onto function

(ii) $f(x) = x^3$

(a) Injectivity ie one to one

Let x, y be two arbitrary elements of R = domain (f) such that

 $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$

:. f is one-one function

(b) Subjectivity ie onto

Let y be any element of co-domain (f) = R $y = f(x) = x^3 \implies x = y^{1/3}$

 $\forall y \in \text{codomain } (f) = R \exists$

 $x = y^{1/3}$ in domain f = R such that $f(x) = f(y^{1/3}) = (y^{1/3})^3$

Hence $f: R \to R$ is an onto function

 $f(x) = x + |x| = \begin{cases} x + x = 2x & \text{if } x \ge 0 \end{cases}$...(i)

[from (1)]

[-x+x=0 if x<0

Note that by Def

|x| = x when $x \ge 0$ |x| = -x when x < 0

FUNCTIONS AND BINARY OPERATIONS

(a) Injectivity i.e. one one

Let x and y be any two negative elements of domain (f) =f(x) = 0and f(v) = 0

f(x) = f(y) and $x \neq y$

Hence f is not one-one function

(b) Surjectivity: i.e. onto

$$y = f(x) = \begin{cases} 2x & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Clearly range (f) = set of all non-negative real numbers

 \therefore Range (f) \subseteq co-domain (f) i.e. R

 $[\because y = 2x, x \ge 0 \Rightarrow y \ge 0]$

(a) Injectivity ie one-one

Hence f is not onto

:. Range (f) ≠ co-domain (f)

Let x, y be any two rational elements of domain (f)

(−1 if x is irrational 1 if x is rational

f(x) = 1 f(y) = 1

f(x) = f(y) and $x \neq y$

: f is not one-one

(b) Surjectivity ie onto

Here Range $(f) = \{-1, 1\} \neq R$ the co-domain (f) hence f is not onto.

and g(3) = g(4) = 7 and g(5) = g(9) = 11 find $g \circ f$ \rightarrow {7, 11, 15} be function defined as f(2) = 3, f(3) = 4, f(4) = 5, f(5)=5Example 4. Let $f: \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$ and $g: \{3, 4, 5, 9\}$

we have gof(2) = g[f(2)] = g(3) = 7 gof(3) = g(f(3)) = g(4) = 7Sol. Here $R_f = \{3, 4, 5\}$ $CD_g \Rightarrow gof$ is defined

gof(4) = g(f(4)) = g(5) = 11 and gof(5) = gf(5) = g(5) = 11, $gof = \{(2, 7), (3,7), (4, 11), (5, 11)\}$

fog and gof are not equal. **Example 5.** If $f(x) = x^2 + x + 1$ and $g(x) = \sin x$ then show that

Sol. $f(x) = x^2 + x + 1$, $D_f = R$, $R_f = \begin{bmatrix} \frac{3}{4}, \infty \end{bmatrix}$ $R_g \subset D_f \Rightarrow D_{f \circ g} = f (g(x)) = f (\sin x) = \sin^2 x + \sin x + 1$ $R_g \cap D_f = [-1, 1] \neq \phi$ fog is defined [: f(x) is defined $\forall x \in R$ and $-1 \le \sin x \le 1 \ \forall x$]

 $R_f \cap D_g = \left[\frac{3}{4}, \infty\right] \neq \phi \implies gof \text{ is defined}$ $R_f \subset D_g \Rightarrow D_{gof} = D_f = R$ $gof(x) = g[f(x)] = g(x^2 + x + 1) = \sin(x^2 + x + 1)$

Example 6. If $f: R \to R, f(x) = x^2$ then find the

(i) range of f

(iii) $\{y \mid f(y) = -1\}$ (ii) $\{x \mid f(x) = 4\}$

Sol. (i) Range of $f = \{x \in R/0 < x < \infty\}$ Ans

(ii) $\{x \mid f(x) = 4\}$

when x = 2, $f(2) = 2^2 = 4$

 $f(x) = x^2$

(iii) $\{y \mid f(y) = -1\}$ \therefore (2, -2) Ans. when x = -2, $f(-2) = (-2^2) = 4$

 $f(x) = x^2$

There is no value of y for which f(y) is -1 $f(y) = y^2$

Hence result is ϕ

by $f(x) = x^2 + 1$ find the range of f. **Example 7.** Let $A = \{-2, -1, 0, 1, 2\}$ and the function $f: A \to R$ is defined

where x = -2 $f(-2) = (-2)^2 + 1 = 5$ x = -1 $f(-1) = (-1)^2 + 1 = 2$ $A = \{-2, -1, 0, 1, 2\}$ and $f(x) = x^2 + 1$

when x = 0 $f(0) = 0^2 + 1 = 1$,

 $f(1) = (1)^2 + 1 = 2$ f(2) = 4 + 1 = 5

when x = 1

when x = 2Hence range of f are $= \{1, 2, 5\}$ Ans.

- 3 then find ■ Example 8. Let $A = \{-2 - 1, 0, 1, 2\}$ and $f: A \to Z$, where $f(x) = x^2 - 2x$

(ii) the pre images of 6, - 3 and 5

Sol. We are given that $A = \{-2, -1, 0, 1, 2\}$ and function $f: A \rightarrow Z$ where $f(x) = x^2 - 2x - 3$ $f(-2) = (-2)^2 - 2(-2) - 3 = 4 + 4 - 3 = 5$

(i) range of f

 $f(0) = (0)^2 - 2(0) - 3 = -3,$ $f(-1)=(-1)^2-2(-1)-3=1+2-3=0$ $f(1) = (1)^2 - 2(1) - 3 = 1 - 2 - 3 = -4$

FUNCTIONS AND BINARY OPERATIONS

range of $f = \{-4, -3, 0, 5\}$ $f(2) = (2)^2 - 2(2) - 3 = 4 - 4 - 3 = -3$

pre image of 6 will not exist. (ii) From the above it is clear that 6 is not an image of any element. Therefore

Let per image of -3 be x_1 then f(x) = -3 $=x^2-2x-3=-3=x^2-2x=0$ =x(x-2)=0 x=0, 2

Similarly pre image of 5 is -2.

Hence pre image of 6, -3 and 5 are ϕ , $\{0, -2\}$, +2

■ Example 9. If $f: R \to R$ where $f(x) = e^x$ find :

(b) $\{y \mid f(y) = 1\}$ (a) The f - image of R

(c) Is f(x + y) = f(x) f(y) true?

Sol. (a) For all real values of x, e^x is a positive real number. Also for any positive real value of x, there exist an element by x in R (domain) such that $f(\log x) = e^{\log x} = x$

.. f image of R or range of f is R⁺ Ans.

 $\{y/f(y) = 1\} = \{0\}$ $=e^x \cdot e^y = f(x) \cdot f(y)$ $f(x+y) = e^{x+y}, \ \forall \ x, y \in R$ $f(x + y) = f(x) \cdot f(y)$ is true $f(y) = e^y = 1$ $e^y = e^o \Rightarrow y = 0$

■ Example 10. If $f: R^+ \to R$ where $f(x) = \log x$, where R^+ is the set of positive real numbers, find

 $\therefore y = \log x \Rightarrow x = e^y \quad \therefore \text{ range of } f(x) = R \text{ Ans.}$ Sol.(i) $f: R^+ \to R$, and $f(x) = \log x$ (c) Is f(x, y) = f(x) + f(y) true? Now for all $x \in R^+$, $\log x \in R$ f(y) = -2(b) $\{y \mid f(y) = -2\}$

therefore $f(x, y) = \log(xy) = \log x + \log y$ $f(x) = \log(x) = f(y) = \log y$ $\{v/f(v) = -2\} = \{e^{-2}\}$ f(xy) = f(x) + f(y) is true. $\log y = -2$ $y = e^{-2}$

> □ Example 11. If $f = \left\{ \left(x, \frac{x^2}{1+x^2} \right), x \in R \right\}$ be a function from R into R (R to R). Determine the range of f. Sol. Here f is a function from R to R defined by

 $y = f(x) = \frac{x^2}{1+x^2}$ $\forall \text{ real } \sim$

Here y is defined \forall real x

From (i) $y(1+x^2) = x^2$ or $x^2(1-y) = y$

Since x is real $\Rightarrow \frac{y}{1-y} \ge 0 \Leftrightarrow 0 \le y < 1$ $x^2 = \frac{y}{1-y}$ or $x = \pm \sqrt{\frac{y}{(1-y)}}$

...(II)

Hence range = (0, 1)

■ Example 12. If $g = \{(1,1), (2,3), (3,5), (4,7)\}$ a function? If g is represented formula $g(x) = \alpha x + \beta$, Find the value of α and β .

Sol. According to question

 $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$

Now g(1) = 1, g(2) = 3, g(3) = 4, g(5) = 77 which shows that every element has one image. Hence it is function. Here g is function because the images of 1, 2, 3, 4 are respectively equal to 1, 3,

from $g(x) = \alpha x + \beta$

 $g(1) = \alpha. 1 + \beta = \alpha + \beta = 1$

 $g(2) = \alpha \cdot 2 + \beta = 2\alpha + \beta = 3$

Subtracting (i) from (ii) we get $2\alpha - \alpha = 3 - 1 \Rightarrow \alpha = 2$

Now substituting the value of a = 2 in (i) we get

 $2+\beta=1 \Rightarrow \beta=-1$

 $\alpha = 2$ $\beta = -1$ Ans.

□ Example. 13. Classify the following function as one-one, many one into or onto give reasons.

(i) $f: Q \rightarrow Q, f(x) = 3x + 7$

(ii) $f: R \to [-1,1], f(x) = \sin x$ (iii) $f: N \to Z, f(x) = |x|$

Sol. (i) Let $x_1, x_2 \in Q$ such that $x_1 \neq x_2$ then

 \Downarrow \Downarrow $3x_1 + 7 \neq 3x_2 + 7$ $f(x_1) = f(x_2)$ $3x_1 \neq 3x_2$ $x_1 \neq x_2$

 $= y \Rightarrow 3x + y \Rightarrow x = \frac{y-7}{3}$. Now if $y \in Q$ then it is necessary that $\frac{y-7}{3} \in Q$ Again let $y \in Q$ (co-domain) if possible let its pre image under f be x. Then f_{kl} Hence f is one-one

Hence f is onto. Hence f is one-one onto

Let $x, y \in R$ then f(x) = f(y)(ii) $f: R \to [-1, 1], f(x) = \sin x$

 $\sin x = \sin y$ $x = n\pi + (-1)^n y$ where $n \in \mathbb{Z}$

Hence, function is not one-one i.e. many one again, we know that $-1 \le \sin x \le 1$

 $f(R) = \{x \mid -1 \le x \le 1\}$ $f(R) \neq R$

Hence the function is into

Hence f is many one into function

We see that $x_1 = x + iy$ and $x_2 = x - iy$ $(y \ne 0)$ are different elements of the

$$f(x_1) = |x + iy| = \sqrt{x^2 + y^2}$$

$$f(x_2) = |x - iy| = \sqrt{x^2 + (-y^2)}$$

$$= \sqrt{x^2 + y^2}$$

$$(x_1) = f(x_2)$$

Thus two different elements of the domain of f have the same image hence f is

Again range of $f = \{|\mathbf{x}| : \mathbf{x} \in N\} = \mathbf{z}^+ \cup \{0\} \neq R \text{ (codomain)}$: f is not onto

Hence f is many one into function

Example 14. If $A = \{x \mid -1 \le x \le 1\} = B$ then tell which of the following functions. Defined from A to B are one-one, onto or one-one onto.

(i) $f(x) = \frac{x}{2}$ (iii) $h(x) = x^2$

(ii) g(x) = |x|

Solution: (i) If $x, y \in A$ then f(x) = f(y)(iv) $k(x) = \sin \pi x$

Again range of $f = f(A) = \left\{ \frac{x}{2} | x \in A \right\}$

FUNCTIONS AND BINARY OPERATIONS

 $= \left\{ |x| \frac{-1}{2} \le x \le \frac{1}{2} \right\} \ne B \text{ (Co domain)}$

Therefore f is one-one into function

Solution: (ii) g(x) = |x|

Function g is not injective (ie. one-one into) because the image of two different

elements of A may have the same g image in B. For example $\frac{1}{2}$, $\frac{-1}{2} \in A$ are such

two elements $\frac{1}{2} \neq \frac{-1}{2}$ but $g\left(\frac{1}{2}\right) = g\left(\frac{-1}{2}\right) = \frac{1}{2}$

Again | x | is always non negative real number hence the range

 $g = g(A) = \{ |x| | x \in A \}$ $= \{x \mid 0 \le x \le 1\} \ne B \text{ (Codomain)}$

the function g is not surjective (or onto)

Hence, the function g is not surjective (or onto)

Hence the function g is injective but not surjective

(iii) Function h is not one-one because two different elements in A may have

For example : $\frac{1}{2}$, $\frac{-1}{2} \in A$, $\frac{1}{2} \neq \frac{-1}{2}$ but $h\left(\frac{1}{2}\right) = h\left(\frac{-1}{2}\right) = \frac{1}{4}$

Also x^2 will always be positive real number because x is a real number, conse-

 $h(A) = \{x^2 | x \in A\} = \{x \mid 0 \le x \le 1\} \ne B \text{ (Co-domain)}$

: function h is not onto

Hence the function h is neither one-one nor onto

(iv) $k(x) = \sin \pi x$

Here -1, $1 \in A$ are two numbers such that $-1 \neq 1$

But $k(-1) = \sin(-\pi) = -\sin \pi = 0$ and $k(1) = \sin \pi = 0$

 \therefore -1, 1 \in A where -1 \neq 1 but k(-1) = k(1)

Hence function k is many one

But range of $k = k(A) = k(A) = \{\sin \pi x \mid x \in A\}$

 $= \{(x \mid -1 \le x \le 1)\} = B \text{ (Codomain)}$

I Example 15. Give an example of each of the following types of func-Hence k is many one onto function.

(iv) One one but not onto Many one onto function

(iii) Onto but not one-one

(v) Neither one-one nor onto

(vi) One-one onto

one into mapping if distinct elements in A have distinct f images in B and there is at least one element in B. Which is not f image of any element in the set A. Solutio : (i) One-one into function : The functions $f: A \rightarrow B$ is said to be one-

Hence $f: A \to B$ is one-one into iff $a \neq b \Rightarrow f(a) \neq f(b)$ $a, b \in A$ and $f(A) \neq B$

B be defined such that $f(x) = x^2$ then under the function Example: If $A = \{3, 5, 7\}$ and $B = \{4, 9, 16, 25, 36, 49, 64\}$ and function $f: A \rightarrow$

$$f(3) = 3^2 = 9 f(5) = 5^2 = 25$$

are not an image of any element in A. element of A have distinct image in B and the elements 4, 16, 36, 64 are in B. Which $f(7) = 7^2 = 49$ this is one-one into mapping since distinct

is not an image of an element in A. onto' if $f(a_1) = f(a_2)$ even if $a_1 \neq a_2$ $a_1, a_2 \in A$ and there is no element in B which (ii) Many one onto function: The mapping $f: A \to B$ is said to be many one

defined by $f(x) = x^2 + 3$ is many one onto, see now. **Example :** If $A = \{-2, 2, -1, 1\}$ and $B = \{4, 7\}$ then the function $f: A \rightarrow B$ is

$$f(-2) = (-2)^2 + 3 = 7, f(-2) = 2^2 + 3 = 7$$

 $f(-1) = (-1)^2 + 3 = 4, f(+1) = 1^2 + 3 = 4$

ment 2 and -2 of A is 7 in B and the image of the elements -1 and 1 of A is 4 in B and there is no element in B which is not an image of an element of A. Therefore this mapping is many one onto because here the image of the ele-

(iii) Onto but not one-one: For onto function the co-domain and range are

Let $A = \{-1, 1, 3\}$, $B = \{2, 1, 0\}$ and let $f: A \to B$ be defined by $f(x) = x^2 + 1$ then $f(-1) = (-1)^2 + 1 = 2$, $f(1) = 1^2 + 1 = 2$, $f(3) = 3^2 + 1 = 10$ f(A) = B

function is not one-one hence function is onto but not one-one have the same image in B. But -1 and 1 of A has the same image 2 in B. Hence The function is onto but for the function to be one-one, no two element of A

(iv) One-one but not onto:

$$f: z \to z, f(x) = 2x + 7$$

$$x, y \in z \text{ then } f(x) = f(y)$$

$$2x + 7 = 2y + 7 \implies 2x = 2y \implies x = y$$

Hence f is one-one.

2x + 7 = y or $x = \frac{y - y}{x}$

 $\Rightarrow 2x+7=2y+7 \Rightarrow 2x=2y \Rightarrow x=y$

Again let $y \in z$ if possible, let x be the pre image of y then f(x) = y

FUNCTIONS AND BINARY OPERATIONS

If y is an integer then $\frac{y-7}{2}$ is not necessarily an integer

Hence the pre image of every element of z (codomain) does not exist in z hence

Hence f is one-one but not onto

of f(x) i.e. of $\sin x$ and for $\forall x \in R, f(x) = \sin x$ has the values in the closed interval $= \sin x \ \forall \ x \in R$. Since for different values of $x \in R$, we can have the same value [-1, 1] so, f is neither one-one nor onto. (v) Neither one-one nor onto: Let $f: R \to R$ be the function defined by f(x)

defined by $f(x) = x^2 \ \forall \ x \in A$ then f is one-one and onto therefore f is bijective. (vi) One-one onto or bijective: Let A = [1, 2] and B = [1, 4] and $f: A \rightarrow B$ is

Example 16. Prove that the function $f: R \to R$ defined by $f(x) = \cos x$ that f becomes. is many one into function. Modify the domain and codomain of f such

(i) One-one into

(ii) Many one onto

(iii) One-one onto

Sol. Here we are given that $f: R \to R$, $f(x) = \cos x$

for some $x \in R$. Since $-1 \le \cos x \le 1 \ \forall \ x \in R$ and $\cos x$ takes every value between -1 and 1

 $=\{-1, 1\}$ Hence we conclude that the image set of R under $f = f(R) = \{x \in R | -1 \le x \le 1\}$

function is not onto ie. into Again the image set of R under f is not equal to codomain R of f. Hence the

Let
$$f(x) = \frac{1}{2} \implies \cos x = \frac{1}{2} = \cos \frac{\pi}{3}$$

$$\Rightarrow \qquad x = 2n\pi \pm \frac{\pi}{3}, \ n \in I$$

$$\therefore \{x/x \in R \ f(x) = \frac{1}{2}\} = \{2n\pi \pm \frac{\pi}{3}, \ n \in I\}$$

into function. Here we see that $\frac{1}{2}$ is the f image of many elements of R. Hence f is many one

Now we have to change domain of f in such way that f become

values of domain $[0, \pi]$ there is no image in R. Therefore (i) One-one into: If function be defined in $f: [0, \pi] \to R$ then for any two

$$f(x_1) = f(x_2), x_1, x_2 \in [0, \pi]$$

 $\cos x_1 = \cos x_2 \implies x_1 = x_2$

(ii) Many one onto : If function be defined in $f: R \to [-1, 1]$ then since $-1 \le$ f is one-one and for its codomain R. We have already proved that it is into.

which is equal to its codomain. Hence f is onto and for the domain R we have Again the image set of R under f is [-1, 1]

already proved that it is many one. (iii) One-one onto : If function be defined in $f: [0, \pi] \to R \text{ then } f(x_1) = f(x_2) x_1, x_2 \in [0, \pi]$

 $\Rightarrow \cos x_1 = \cos x_2 \Rightarrow x_1 = x_2$

under f is [-1, 1] which is equal to its codomain. Hence f is onto. Hence f is one-one Hence f is one-one but we know that $-1 \le \cos x \le 1$ again the image set of R

■ Example 17. If $N = \{1,2,3,4,....\}$, $O = \{1,3,5,7,....\}$ $E = \{2,4,6,8,....\}$ and f_1 , f_2 are functions

$$f_1: N \rightarrow O$$
, $f_1(x) = 2x - 1$
 $f_2: N \rightarrow E$, $f_2(x) = 2x$
prove that f_1 and f_2 are one-one onto.
Solution: Case I: Here $f_1: N \rightarrow O$, $f_1(x) \rightarrow O$, where $N = \{1, 2, 3, 4, \dots\}$ and $O = \{1, 3, 4, \dots\}$

Solution: Case I: Here $f_1: N \to 0, f_1(x) = 2x \Rightarrow 2x_1 - 1 = 2x_2 - 1 \Rightarrow 2x_1 = 2x_2 \Rightarrow x_1 = x_2$ One-one function: Let $f(x_1) = f(x_2)$, $x_1, x_2 \in N$ where $N = \{1, 2, 3, 4, \dots\}$ and $O = \{1, 3, 5, 7, \dots$

Onto function: Let $y \in O$ be an element in set O whose pre image $x \in N$.

then
$$f_1(x) = 2x - 1 = y \implies x = \frac{y+1}{2}$$

of each element of O (Codomain) exists in the codomain of N. Here we see that for every value of y (in 0) \exists a value x in N ie. the pre image

Hence J is onto

where $N = \{1, 2, 3, 4\}$ and $E = \{2, 4, 6, 8\}$ Case II Here $f_2: N \to E, f_2(x) = 2x$ For one-one function let $x_1, x_2 \in N$ $x_1 = x_2$ $2x_1 = 2x_2$ \Rightarrow $f_1(x) = f_2(x)$

For onto function f is one-one

Let $y \in E$ be an element, if possible, let the pre-image of y be x in N $f_2(x) = 2x = y \Rightarrow x = y/2$

of every element of the codomain E exist in the domain N. Hence f_2 is onto. Here we see that for every value of y in $E \ni a$ value x in N, i.e. the pre image Thus $f_2: N \to E$ is one one onto function.

FUNCTIONS AND BINARY OPERATIONS

(i) $f(x) = x^2$ (ii) $f(x) = x^3$ (iii) $f(x) = x^3 + 3$ R as follows classify f as one-one many into or onto give reason. Example 18.If a function f is defined from the set R of real numbers to (iv) $f(x) = x^3 - x$

Sol. (i) Since $f: R \to R$, is defined $f(x) = x^2$

then $f^{-1}(4) = \{2, -2\}$

because 4 is the image of both 2 and -2

negative real number. Hence f is not onto. negative real number. Therefore we cannot find elements in R. Whose square is R. Whose square is -4 therefore $f^{-1}(-4) = \phi$. The range of f is the set of all non Hence the function f is not one-one it is many one since there is not element in

Hence $f: R \to R$ is many one into function

(ii) $f: R \to R$, $f(x) = x^3$

If $x_1, x_2 \in R$ such that $x_1 \neq x_2$ then $x_1 \neq x_2$ $\Rightarrow x_1^3 \neq x_2^3 \Rightarrow f(x_1) \neq f(x_2)$

: The function f is one-one

Let $y \in R$ then $y^{1/3} \in R$ and we have $f(y)^{1/3} = (y^{1/3})^3 = y$

Hence f is one-one and onto ie bijective.

(iii) Let $x, y \in R$ then

 $f(x) = f(y) = x^3 + 3 = y^3 + 3 \Rightarrow x^3 = y^3 \Rightarrow x = y$

Hence f is one one

Again let $y \in R$ (co domain)

If possible let x be the pre image of y. Then

 $f(x) = y = x^3 + 3 = y \implies x = (y - 3)^{1/3} \in R$

hence f is onto. Hence the pre image of every element of R (Co-domain) exists in R (domain)

(iv) Let $x, y \in R$ then

 $f(x) = f(y) \Rightarrow x^3 - x \Rightarrow y^3 - y$ $(x^3 - y^3) - (x - y) = 0$

 $(x - y) [x^2 + xy + y^2 - 1] = 0$

either x = y or $x^2 + xy + y^2 - 1 = 0$

Hence function f is many one

under f. Then f(x) = yAgain we see that $y \in R$ (codomain). If possible let x be the pre image of y

 $x^3-x=y \Rightarrow x^3-x-y=0$

codomain R exists in the domain R. Hence function is onto This equation has at least one real root therefore pre image of each element of

Hence f is many one onto.

FUNCTIONS AND BINARY OPERATIONS

R can be defined

Sol. (i) From the definition of the functions f and g it is obvious that $gof: R \rightarrow$

```
(i) fog
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     □ Example 19. If A = \{1,2,3,4\} and f = \{(1,2), (2,1), (3,3), (4,2),\}, g = \{(1,3), (2,3), (3,3), (4,2),\}
(vi) f(x) = x + 7, g(x) = \frac{1}{x^2 + 1}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  {(1,3), (2,1), (3,2), (4,4)} are two functions defined on A. Find
                                                                                                                                       \blacksquare Example 20. If f: R \to R and g: R \to R are two functions defined as
                                              (v) f(x) = x(x-1), g(x) = x(x+1)
                                                                      (iii) f(x) = \frac{1}{2-x}, g(x) = \frac{1}{1+x}
                                                                                                                 (i) f(x) = 2x + 3, g(x) = x^2 + 1
                                                                                                                                  follows then find (f \circ g)(x) and (g \circ f)(x):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           fog(2) = 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     fog(4) = 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               fog(3) = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          fog(1) = f[g(1)] = f(3)
                                                                                                                                                                                                                                                                                                                                                                                                               gof(4) = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       gof(1) = g[f(1)] = g(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     fog(3) = f[g(3)] = f(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                fog(2) = f[g(2)] = f(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         fog(1) = 3
                                                                                                                                                                                                         fof(4) = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                    gof(4) = g[f(4)] = g(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                            gof(3) = 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               gof(3) = g[f(3)] = g(3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       gof(2) = 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             gof(2) = g[f(2)] = g(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   gof(1) = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          fog(4) = f[g(4)] = f(4)
                                                                                                                                                                                                                          fof(4)=f[f(4)]=f(2)
                                                                                                                                                                                                                                                                      fof(3)=f[f(3)]=f(3)
                                                                                                                                                                                                                                                                                                                                                                fof(1) = f[f(1)] = f(2)
                                                                                                                                                                                                                                                      fof(3) = 3
                                                                                                                                                                                                                                                                                                  fof(2) = 2
                                                                                                                                                                                                                                                                                                                   fof(2) = f[f(2)] = f(1)
                                                                                                                                                                                                                                                                                                                                              fof(1) = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (ii) go J
                                                                                                                                                                                                                                                                                                                                                                                       gof = \{(1, 1), (2, 3), (3, 2), (4, 1)\} Ans.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             fog = \{(1, 3), (2, 2), (3, 1), (4, 2)\} Ans.
                                                                                                                                                                      fof = \{(1, 1), (2, 2), (3, 3), (4, 1)\} Ans.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (iii) fof
                                                   (iv) f(x) = x^2 + 3x + 1, g(x) = (2x - 3)
                                                                                            (ii) f(x) = x^2 + 8, g(x) = 3x^3 + 1
```

```
(iii) f(x) = \frac{1}{2-x}, g(x) = \frac{1}{1+x}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (ii) f(x)=x^2+8, g(x)=3x^3+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        =f[x^2+1]=2(x^2+1)+3=2x^2+2+3=2x^2+5 Ans.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (gof)(x) = g[f(x)]
                                                               (fog)(x) = \frac{1}{2x+2-1}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (fog)(x) = f[g(x)]
                                            gof(x)
                                                                                                                                                                                                          fog(x) = f[g(x)]
                                                                                                                                                                                                                                                                                                                                                                      gof(x) = g[f(x)]
                                                                                                                                                                                                                                                                                                                                                                                                                                                  fog(x) = f[g(x)]
=g_{2-x}
                                            =g[f(x)]
                                                                                                                                                                                                                                                                                                                                                 =g[x^2+8]
                                                                                                                                                                                                                                                                                                             = 3 \left[ x^6 + 24x^4 + 192x^2 + 512 \right] + 1
                                                                                                                                                                                                                                                                                                                                  =3(x^2+8)^3+1
                                                                                                                                                                                                                                                                                                                                                                                                                                =f[3x^3+1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                =4x^2+12x+10
                                                                                                                                                                                                                                                                        =3x^6+72x^4+576x^2+1537 Ans
                                                                                                                                                                                                                                                                                           =3x^6+72x^4+576x^2+1536+1
                                                                                                                                                                                                                                                                                                                                                                                         = 9x^6 + 6x^3 + 1 + 8 = 9x^6 + 6x^3 + 9
                                                                                                                                                                                                                                                                                                                                                                                                               =(3x^3+1)^2+8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    =4x^2+12x+9+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      = g(2x + 3) = (2x + 3)^2 + 1
                                                                                      x+1
                                                                                                        x+1
                                                                               11
                                                                                                                     2(1+x)-1
                                                                  2x + 1
                                                                                       1+x
                                                                                                                                           1+x
```

(iv) $f(x)=x^2+3x+1$, g(x)=(2x-3)

 $\frac{1+}{(2-x)}$

2 - x + 1

Ans.

fog(x) = f[g(x)]

FUNCTIONS AND BINARY OPERATIONS

Example 21. If $f: R^+ \to R^+$, $f(x) = x^2 + \frac{1}{x^2}$ $g: R^+ \to R^+$, $g(x) = e^x$ 3 or 3 $= f [(2x-3)] = (2x-3)^2 + 3(2x-3) + 1$ gof(x) = g[f(x)] $fog(x) = f[g(x)] = f\left[\frac{1}{x^2 + 1}\right]$ $f(x) = x + 7, g(x) = \frac{1}{x^2 + 1}$ gof(x) = g[f(x)]fog(x) = f[g(x)] = f[x(x+1)]gof(x) = g[f(x)]f(x) = x(x-1), g(x) = x(x+1) $= \frac{1}{x^2 + 14x + 49 + 1} = \frac{1}{x^2 + 14x + 50}$ Ans. $=\frac{7x^2+8}{(x^2+1)}$ =g[x+7] $=(x^2-x)(x^2-x+1)$ Ans. $=x^4+x^2-2x^3+x^2-x$ $= g[x(x-1)] = \{x(x-1)\} [x(x-1)+1] - \dots$ = $(x^2-x)^2 [(x^2-x)+1] = (x^2-x)^2 + (x^2-x)$ = $[x^2 + x]$ [$(x^2 + x) - 1$] = $(x^2 + x)^2 - (x^2 + x)$ = $x^4 + x^2 + 2x^3 - x^2 - x$ or $(x^2 + x)(x^2 + x - 1)$ Ans. $=2x^2+6x+2-3$ = [x(x+1)] [x (x+1)-1] $=2x^2+6x-1$ Ans. $= g[x^2 + 3x + 1] = 2(x^2 + 3x + 1) - 3$ $=4x^2-6x+1$ $=4x^2-12x+9+6x-9+1$ $(x+7)^2+1$

■ Example 22. If $f(x) = \log \frac{1+x}{1-x}$ and $g(x) = \frac{3x+x^3}{1+3x^2}$ find $(f \circ g)(x)$. $g: R^+ \to R^+, g(x) = e^x$ Here we have $f(x) = \log \frac{1+x}{1-x}$, $g(x) = \frac{3x+x^3}{1+3x^2}$ $(f \circ g)(x) = f[g(x)] = f\left[\frac{3x + x^3}{1 + 3x^2}\right]$ (gof)(x) = g[f(x)] $fog(x) = \log$ =g $x^2 + \frac{1}{x^2}$ $= \log \left\{ \frac{1 + 3x^2 + 3x + x^3}{1 + 3x^2 - 3x - x^3} \right\}$ $1-\frac{3x+x^3}{}$ $1+\frac{3x+x^3}{}$ $1 + 3x^2$ $1+3x^{2}$

Sol. Here we have $f: R^+ \to R^+$, $g(x) = \sqrt{x}$ then find gof and fog are they equal functions. \blacksquare Example 23. If $f: R^+ \to R^+$, $f(x) = x^2$ and $g: R^+ \to R^+$, $g(x) = \sqrt{x}$ $=3\log\left(\frac{1+x}{1-x}\right)$

 $\log \frac{(x+1)^3}{(1-x)^3} = \log \left(\frac{x+1}{1-x}\right)^3$

gof(x) = g[f(x)]

$$= g(x^2) = \sqrt{x^2} = x$$

$$fog(x) = f[g(x)]$$

$$= f(\sqrt{x}) = (\sqrt{x})^2 = x$$

and

Hence they are equal functions. gof(x) = fog(x) = (x)

Sol. Here we have

 $f: R^+ \to R^+, f(x) = x^2 + \frac{1}{x^2}$

 $f):A\to C$ is defined, then proved that \square Example 24. If $f: A \to B$ and $g: B \to C$ be two such functions that (go

(i) If gof is one-one then g is also one-one

(ii) If gof is one one then f is also one-one

Sol. (i) $f: A \to B$ and $g: B \to C$ then the function $g \circ f$ can be defined from $s \circ g$ (iii) If gof is onto and g is one one then f is onto

A to set C i.e. (gof) $A \rightarrow C$

ment of C is gof image of some element of A i.e. let $x \in A$ and $y \in C$ then for each element x there exist at least one element (i) If gof is bijection then g is also bijection, gof is bijection means, every ele

In $y \in C$ such that

$$g[f(x)] = y$$

$$g[f(x)] = y$$

element of C is in B. Hence function $g: B \to C$ is onto i.e. for each y there correspond f(x) present in B hence pre image of every

Let x_1, x_2 are two elements in A be such that (ii) If gof is one-one then f is also one-one

 $gof(x) = (gof)(x_2)$

then
$$gof(x_1) = gof(x_2) \implies g[f(x_1)] = g[f(x_2)]$$

 $\Rightarrow f(x_1) = f(x_2)$
 $\Rightarrow f(x_1) = f(x_2)$

: g is one one :: f is one one

Hence function f is one-one. If gof is one-one

(iii) If gof is onto and g is one-one then f is onto

 $g(x_1) = g(x_2),$ $x_1, x_2, \in B$

If gof is onto i.e. pre image of every element of C lie in A and g is one-one i.e.

gof(x) = y, $x_1 = x_2$

 $y \in C, x \in A$

 $g\left[f\left(x\right) \right] =y$

According to question Let $g\{f(x_1)\} = y_1$ and $g\{f(x_2)\} = y_2$,

 $f(x_1) = f(x_2)$

also same for any two equal values of y. Hence for pre-image of every element Hence a pre-image exists for each corresponds to y and there pre image are

Sol. Hence $f: R \to R$, f(x) = 2x - 3■ Example 25. If $f: R \to R$, f(x) = 2x - 3 and $g: R \to R$ $g(x) = \frac{x+3}{2}$.

> and $g: R \to R$, $g(x) = \frac{x+3}{2}$

 $\left(\frac{x+3}{2}\right) - 3 = x + 3 - 3 = x$

(fog)(x) = f[g(x)]

Also

(gof)(x) = g[f(x)] $=\frac{2x-3+3}{2}=x$ =g[2x-3]

 $I_R = I_R(x) = x$

Hence $gof = fog = I_R$ Hence proved $gof(x) = fog(x) = I_R(x) = x$

tion exists? Give reasons: ■ Example 26. For which of the following functions, the inverse func-

(i) $f: R \to R, f(x) = e^x$

(iii) $h:[0,\pi]\to[-1,1], h(x)=\cos x$ (iv) $\phi: Q \rightarrow Q, \phi(x) = x^3 - 1$ (ii) $g: R \to R, g(x) = |x|$

Here $f(x) = e^x = y$ Sol. (i) $f: R \to R$, $f(x) = e^x$

 $x = \log y$

under f = f(R)Correspond to every value of x, y will be positive. Therefore image set of R

Again image set of R under f is not equivalent to codomain R of f. Hence f is not

Hence inverse function of f doesn't exist

(ii) $g: R \rightarrow R, g(x) = |x|$

f = f(R)Correspond to every value of x, y will be positive therefore image set of R under

Again image set of R under f is not equivalent to codomain R of f. Hence f is not

Hence inverse function of f does not exist

(iii) $h: [0, \pi] \to [-1, 1], h(x) = \cos x$ Here

 $h(x) = \cos x$

 $\Rightarrow \cos x_1 = \cos x_2 \Rightarrow x_1 = x_2$ $x_1 x_2 \in [0, \pi]$ $h(x_1) = h(x_2)$

Let

19

Again image set [-1, 1] of x under h is equivalent to codomain of h. Hence h_{ig}

Hence inverse function of h exist.

 $\phi: Q \to Q, \phi(x) = x^3 - 1$

$$\phi(x_1) = \phi(x_2)$$

$$x_1^3 - 1 = x_2^3 - 1 \Rightarrow x_1^3 = x_2^3 \Rightarrow x_1 = x_2$$
h is one one

Hence ϕ is one one Again let

 $\phi(x) = x^3 - 1 = y$ $\phi(x) = y$ $x^3 = y + 1$

 $x = (y + 1)^{1/3}$

i.e. correspond to every of y the value of x lie in Q is not necessary

For example there is no such value of x in Q for which $x^3 - 1 = 1$, Hence ϕ is not

Hence inverse function ϕ does not exist.

Example 27. Find f^{-1} (if it exist) when $f: A \to B$, where

(i) $A = \{0, -1, -3, 2\}, B = (-9, -3, 0, 6), f(x) = 3x$ (ii) $A = \{1, 3, 5, 7, 9\}, B = \{0, 1, 9, 25, 49, 81\}, f(x) = x^2$

Sol. (i) Here we have $f: A \to B$ $(iv)A = B = R, f(x) = x^3$ (iii) $A = \left\{ x \in R \middle| -\frac{\pi}{2} \le x \le \frac{\pi}{2} \right\}, B = \{ x \in R \middle| -1 \le x \le 1 \}, f(x) = \sin x \right\}$

f(x) = 3x $A = \{0, -1, -3, 2\}$ and $B = \{-9, -3, 0, 6\}$,

f(-3) = -9f(-1) = -3f(2) = 6f(0) = 0

Here for all $x \in A f(x) \in B$

(ii) Here $f^{-1} = \{(0, 0), (-3, -1), (-9, -3), (6, 2)\}$ $f = \{(0, 0), (-1, -3), (-3, -9), (2, 6)\}$ $f(x) = x^2 = y$ $A = \{1, 3, 5, 7, 9\}, B = \{0, 1, 9, 25, 49, 81\}$

FUNCTIONS AND BINARY OPERATIONS

₩ $0 = y \in B$ But $f^{-1}(y) = f^{-1}(0) = 0 \in A$ $f^1(y) = \pm \sqrt{y} \Rightarrow f^1(0) = 0 \notin A$ $x^2 = f^{-1}(y)$ and $x = \pm \sqrt{y}$

(iii) $A = \left\{ x \in R \middle| \frac{-\pi}{2} \le x \le \frac{\pi}{2} \right\}, B = \left\{ x \in R \middle| -1 \le x \le 1 \right\}$

Hence f^{-1} does not exist.

and $f(x) = \sin x$ $f: A \to B \text{ and } f(x) = \sin x$ $f^{-1}(x) = y$

 $\sin y = x$ f(y) = x

(iv) A = B = R, $f(x) = x^3$ $f^{-1}(x) = \sin^{-1}x$

 $y = \sin^{-1} x$

 $f^{-1}(x) = x^{1/3}$ $x = y^{1/3}$ y = f(x) $\Rightarrow x = f^{-1}(y)$ and $y = x^3$ $\Rightarrow f^{1}(y) = y^{1/3}$

and f is one-one onto. Therefore f^{-1} exist and $f^{-1}(x) = x^{1/3}$.

Sol. If $x, y \in R-\{-1\}$ then f(x) = f(y)bijection. Also find f-1 **Example 28.** If $f: R - \{-1\} \to R - \{-1\}, f(x) = \frac{x}{x+1}$, prove that f is a

 $\Rightarrow x(y+1) = y(x+1) \Rightarrow xy + x = yx + y \Rightarrow x = y$ Again let there exist an element $y \in R - \{-1\}$ Hence f is one one whose pre image in $x \in R - \{-1\}$ $x(1-y)=y \Rightarrow x=\frac{y}{1-y}$ x+1=yf(x) = y $\Rightarrow x = xy + y$

Hence function f is one-one onto Pre image of every element of the codomain $R - \{-1\}$ exist in the domain $R - \{-1\}$ For each value of y then correspond a value x except y = 1 i.e

If f image of x is y then

 $f^1: R - \{-1\} \implies R - \{-1\}$ will be defined as follows f(x) = y

x+1 = y

1 $x = \frac{y}{1 - y}$

 $f^{1}(y) = x$

U $f^{-1}(y) = \frac{1-y}{1-y}$

 $f^{-1}(x) = \frac{x}{1-x}$ Ans.

1

■ Example 29. If $f(x) = \frac{x-1}{x+1}$, $x \neq -1$, 1 then prove that $f \circ f^{-1}$ is the identity function.

Sol. Here we have $f(x) = \frac{x-1}{x}$. $x+1, x \neq -1, 1$

 $fof^{-1} = ?$

Here the given function f is bijective so its inverse exist

x - xy = 1 + y \Rightarrow x(1 - y) = 1 + y $f(x) = \frac{x-1}{x}$ $x-1=y(x+1) \Rightarrow x-1=yx+y$ x+1=y1+ y

If f image of y is x then f^{-1} will be defined as follows.

 $\frac{x-1}{x+1} = y$ $f^{-1}(y) = x \Leftrightarrow f(x) = y$ $\Rightarrow x = \frac{1+y}{1-y}$

Again

 $f^{1}(y)=x \Rightarrow f^{1}(y)=\frac{1+y}{1-y}$

Now

 $fof^{-1}(x) = f[f^{-1}(x)] = \begin{bmatrix} 1+x \\ 1-x \end{bmatrix}$ $f^{-1}(x) = \frac{1+x}{1-x} \quad \forall \ x \neq -1, 1$

= 1+x-1+x

1+x 1-x

 $\frac{1+x+1-x}{1+x+1-x} = \frac{2x}{2} = x$

EUNCTIONS AND BINARY OPERATIONS

Therefore $fof^{-1}(x) = x = 1(x)$

Hence fof is the identity function.

 $\rightarrow B, f(x) = 2x+1; g: B \rightarrow C, g(x) = x^2-2 \text{ then write } (g \text{ of})^{-1} \text{ and } f^{-1} \text{ og}$ as set of ordered pairs. **Example 30.** If $A = \{1,2,3,4\}$, $B = \{3,5,7,9\}$, $C = \{7,23,47,79\}$ and f : A

Sol. Here we are given that

 $A = \{1, 2, 3, 4\}, B = \{3, 5, 7, 9\}, C = \{7, 23, 47, 79\}$

 $f: A \to B$ $f(x)=2x+1, \forall x \in A$

Now substituting the value of x = 1, 2, 3, 4 in f(x) = 2x + 1

when x = 1 $f(x) = f(1) \quad 3 \in B$

when x = 2 $f(2) = 2 \times 2 + 1 = 5 \in B$

when x = 3 $f(3) = 2 \times 3 + 1 = 7 \in B$

when x = 4 $f(4) = 2 \times 4 + 1 = 9 \in B$ $f = \{(1, 3), (2, 5), (3, 7), (4, 9)\}$

Now range of $f = \text{set of second components} = \{3, 5, 7, 9\} = B$.. f is onto. Again first element of no two ordered pairs are same. Therefore f function $f^1: B \to A$ will exist then is one-one. This way: $f: A \rightarrow B$ is one-one onto function therefore inverse

 $^{-1} = \{(3,1)(5,2), (7,3)(9,4)\}$

will be one-one onto.

Given that $g: B \to C$, $g(x) = x^2 - 2$ where $x \in B$

Now substituting the value of x = 3, 5, 7, 9 in g(x)

 $g(x) = x^2 - 2$

x = 5 then $g(5) = 5^2 - 2 = 23 \in C$ x = 3 then $g(3) = 3^2 - 2 = 7 \in C$

when x = 9 then $g(9) = 9^2 - 2 = 79 \in C$ x = 7 then $g(7) = 7^2 - 2 = 47 \in C$

 $g = \{(3, 7), (5, 23), (7, 47), (9, 79)\}$

 \therefore range of $g = \text{set of second elements} = \{7, 23, 47, 79\} = C$

.. g is onto since first element of no two ordered pairs are same Therefore g is one-one. This way $g: B \to C$ is one-one onto. Therefore inverse

function of g $g^{-1}: C \to B$ will exist

 $g^{-1} = \{(7,3)(23,5)(47,7)(79,9)\}$

. (IV)

Will also be one-one onto function

Clearly the composite function of two bijections is also a bijection

 $gof: A \rightarrow C$ is also a bijection and then its inverse function

Now Now if $g^{-1}B \to A$ and $f^{-1}B \to A$ then $f^{-1}og^{-1}: C \to A$ will exist and $(gof)^{-1}: \rightarrow A \text{ will exist.}$ (gof)(1) = g[f(1)](gof)(4) = g[f(4)](gof)(3) = g[f(2)](gof)(2) = g[f(2)]gof(x) = g[f(x)] $gof^{-1} = \{(7,1)(23,2), (47,3)(79,4)\}$ $gof = \{(1, 7), (2, 23), (3, 47), (4,79)\}$ = g(7) = 47=g(5)=23=g(3)=7

 $(f^{-1} og^{-1}) (47) = f^{-1} \{g^{-1} (47)\} = f^{-1}(7) = 3$ $(f^{-1} \circ g^{-1})$ (23) = $f^{-1} \{g^{-1} (23)\} = f^{-1} (5) = 2$ $f^{-1} \circ g^{-1}$) (7) = $f^{-1} \{g^{-1}(7)\} = f^{-1}(3) = 1$

 $\therefore (f^{-1} \circ g^{-1}) = \{(7, 1), (23, 2), (47, 3), (79, 4)\}$ $(f^{-1} \circ g^{-1})$ (79) = $f^{-1} \{g^{-1} (79)\} = f^{-1} (9) = 4$

 \blacksquare Example 31. If $f: R \to R, f(x) = 3x - 4$, does f^{-1} exist? If yes find the Hence from (v) and (vi) we can also conclude that $(gof)^{-1} = f^{-1} og^{-1}$ formula for f^1 .

Sol. Let $x_1, x_2 \in R$ then $f(x_1) = f(x_2)$ Hence f is one one function $=3x_1-4=3x_2-4$

Again let $y \in R$ (codomain), if possible, let x be the pre image of y then f(x) = y

 $\Rightarrow x = \frac{y+4}{3} \in 4 \text{ (domain)}$

and $f^{-1}(y) = x$ then f(x) = yHence f is onto. Thus f is bijection hence the inverse $f^{-1}: R \to R$ exist let $y \in R$ Hence pre-image of every element of the co-domain R exist in the domain R

 $f^{-1}(x) = \frac{x+4}{3}$ $f^{-1}(y) = \frac{y+4}{3}$ 3x - 4 = y $\forall x \in R$

■ Example 32. Let $A = R - \{3\}$, $B = R - \{1\}$ and $f : A \to B$, $f(x) = \{1\}$ Hence $f: R \to R, f^{-1}(x) = \frac{x+4}{3}$ Ans.

> **Sol.** If $x_1, x_2 \in A$ be such that $f(x_1) = f(x_2)$ $\frac{1}{x-3}$ prove that f is is bijection. Also find the formula for f^{-1} .

 $x_1x_2 - 2x_2 - 3x_1 + 6 = x_1x_2 - 2x_1 - 3x_2 + 6$ $(x_1 - 2)(x_2 - 3) = (x_1 - 3)(x_2 - 2)$ $-3x_1 - 2x_2 = -3x_2 - 2x_1$ $\frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$ $-x_1 = -x_2$ $x_1 = x_2$

Hence f is one-one

Let $y \in B$, if x be the pre-image of y then

x-2=xy-3yx-2=y(x-3) $f(x) = \frac{x-2}{x-3} = y$ $x = \frac{2 - 3y}{1 - y}$ $\frac{3y-2}{y-1}$

exist in the domain Here we see that the pre image of every element of the co-domain $B = R - \{1\}$

 $A = R - \{3\}$ Hence f is onto

So, their inverse exist ⇒ f is one-one onto

If f image of x is y then $f^{-1}: R \to R$ will defined as follows. $f^{(1)}(y) = x \Leftrightarrow f(x) = y$

 $f(x) = \frac{x-2}{x-3}$

 $f^{-1}(x) = \frac{3x-2}{x-1}$ $f^{-1}(y) = x$ $y = \frac{x-2}{x-3}$ $\Rightarrow f^{-1}(y) = \frac{3y-2}{y-1}$

Again

■ Example 33. Which of the following definitions of * is a binary operation on the set gives against. Give reason in support of your answer.

 $\Rightarrow f^1: B \to A$,

 $f^{-1}(x) = \frac{3x-2}{x-1}$

Ans.

(iii) Find the invertible elements of R with respect to *.

Sol. (i) if $a, b \in R$ they by definition of *

[by commutative property of addition and multiplication of real numbers.] $a * b = a + b - ab = b + a - b \cdot a = b * a$

: * is commutative

* is commutative.

$$a * (b * c) = a * (b + c - bc) = a + (b + c - bc) + a(b + c - bc)$$

$$= a + b + c - ab - bc - ca + abc \qquad(i)$$

(a * b)* c = (a+b-c) * c = a+b-ab+c-(a+b-ab)c= a + b + c - ab - bc - ca + abc

from (i) and (ii)

 $a * (b * c) = (a * b) * c, \forall a, b, c \in R$

Hence * is an associative operation.

(ii) If possible, let c be the identity in R for the operation *.

Thus, for any $a \in R$,

 $a + e - ae = a \implies e(1 - a) = 0$ a * e = a [by definition of identity]

e = 0 [: (1-a) is not necessarily equal to zero]

(iii) Let $a \in R$ If possible, let x be the inverse of a. Then, by definition .. 0 is the identity for *.

a + x - ax = 0 $\Rightarrow x(a - 1) = a$

a * x = 0 (identity)

 $x = \frac{a}{a+1} \in R \text{ If } a \neq 1$

 $a \in R \ (a \neq 1)$ is invertible

■ Example 36. On the set Q⁺ of positive rational, two binary operations

(i) $a*b = \frac{ab}{3}$, $\forall a,b \in Q^+$

(ii) $a*b = \frac{ab}{4}$, $\forall a,b \in Q^+$

their identities and find the inverse of element with respect to these Prove that both the operations are commutative and associative. Find

 $a*b = \frac{ab}{3}, \forall a, b \in Q^+$

Commutative: $a * b = \frac{ab}{3} = \frac{ba}{3} = b * a$ Associative: a * (b * c) = (a * b) * c

L.H.S. = $a *(b * c) = a * (\frac{bc}{3})$

FUNCTIONS AND BINARY OPERATIONS

 $\frac{abc}{\$} = \left(\frac{ab}{3}\right) * c = (a * b) * c$

Hence * is commutative as well as associative

Identity element: - Let e be the identity element in the binary operation *. Then for a ∈ Q⁺

 $a * e = \frac{ae}{3} = a$

 $\left(\frac{e}{3}-1\right)$ a=0

Ų.

 $[\because a \neq 0]$

 $\frac{e}{3}-1=0 \Rightarrow e=3$

Let $a \in Q^+$ If possible let x be inverse element of a then from definition a * x = 3 (identity element)

 $a * b = \frac{ab}{4} \forall a, b \in \mathcal{Q}^+$ $\frac{ax}{3} = 3 \implies ax = 9 \implies x = \frac{9}{a}$

Commutative :

 \equiv

Associative: a * (b * c) = (a * b) * cL.H.S. = a * (b * c)

R.H.S. $\rightarrow (a*b)*c$

 $\left(\frac{ab}{4}\right) * c = \frac{abc}{16}$

Hence * is commutative as well associative operation

*. then for $a \in Q^+$ Identity element :- Let e be the identity element in the binary operation

 $\left(\frac{ae}{4}-a\right)=0$ $a * e = \frac{ae}{4} = a$ (by definition)

 $\frac{e}{4}$ -1=0 \Rightarrow e=4

Let $a \in Q^+$ if possible let x be inverse element of a then from definition.

 $\frac{ax}{4} = 4 \implies x = \frac{16}{a} \text{ Ans.}$ $\blacksquare \text{ Example 37. If } S = \{f_1, f_2, f_3, f_4\} \text{ whose } f_1, f_2, f_3 \text{ and } f_4 \text{ are functions}$ defined on the set R_0 of non zero real numbers, as follows.

 $f_1(x) = x, f_2(x) = -x, f_3(x) = -\frac{1}{x}$ and $f_4(x) = \frac{1}{x}$

of the operation. Also find which elements are invertible. Also find the nary operation with the help of the composition table. Find the identity Prepare the composition table of S for the composite of function as bi-

Sol. Here we have $f_1(x) = x$, $f_2(x) = -x$, $f_3(x) = \frac{-1}{x}$ and $f_4(x) = \frac{1}{x}$ $f_10f_1(x) = f_1[f_1(x)] = f_1(x) = x$ $f_10f_2(x) = f_1[f_2(x)] = f_1(-x) = -x$ $f_10f_3(x) = f_1[f_3(x)] = f_1\left(\frac{-1}{x}\right) = -\frac{1}{x}$

 $f_20f_1(x) = f_2[f_1(x)] = f_2(x) = -x$ $f_20f_2(x) = f_2[f_2(x)] = f_2(-x) = x$ $f_10f_4(x) = f_1[f_4(x)] = f_1\left[-\frac{1}{x}\right] = -$

 $f_20f_3(x) = f_2[f_3(x)] = f_2\left(-\frac{1}{x}\right) = \frac{1}{x}$

 $f_20f_4(x) = f_2[f_4(x)] = f_2\left(\frac{1}{x}\right) = -\frac{1}{x}$ $f_30f_1(x) = f_3[f_1(x)] = f_3(x) = -\frac{1}{x}$

 $f_30f_2(x) = f_3[f_2(x)] = f_3(-x) = \frac{1}{x}$

 $f_30f_3(x) = f_3[f_2(x)] = f_3\left(-\frac{1}{x}\right) =$

 $f_30f_4(x) = f_3[f_4(x)] = f_3\left(\frac{1}{x}\right) = -x$ $f_4 0 f_1(x) = f_4 [f_1(x)] = f_4(x) =$

> [: a ≠ 0] FUNCTIONS AND BINARY OPERATIONS

 $f_40f_2(x) = f_4[f_2(x)] = f_4(-x) = -\frac{1}{x}$

 $f_40f_3(x) = f_4[f_3(x)] = f_4\left(-\frac{1}{x}\right) = -x$ $f_40f_4(x) = f_4[f_4(x)] = f_4$

.. Composition table of S for the composite functions as binary operations

From the above table it is clear that x is the identity element of f_1, f_2, f_3 and f_4 and $f_1^{-1}(x) = x$

 $f_2^{-1}(x) = -x, f_3^{-1}(x) = \frac{-1}{x}, \quad f_4^{-1}(x) = \frac{1}{x}$

Example 38. $A = \{\pm 2, \pm 1, 0\}; B = \{0, 1, 2, 3, 4\}$

Find type or nature of function **Solution**: $f = \{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\}$

a many one and onto function

Example 39. $f(x) = 4x^2 + 3x - 5$ and g(x) = 2x + 6 find fog (4) and go

gof(-2) = g[f(-2)]fog (4) = f[g(4)] = f[8 + 6] = f(14) = $4(14)^2 + 3(14) - 5$ $= g[4 \times 4 + 3 \times -2 - 5]$ $= g(16-6-5) = g(5) = 2 \times 5 + 6$

Exercise 2.1

1. Let A and B sets. Show that $f: A \times B \to B \times A$ such that f(a, b) is bijective

2. If $f(x) = \frac{4x+3}{6x-4}$; $x \neq \frac{2}{3}$ show that $f \circ f = x \ \forall \ x \neq \frac{2}{3}$.

3. Consider $f: \mathbb{R}_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x$ show that f is invertible with $f(y) = \frac{\sqrt{y+6}-1}{3}.$

23

- 4. If $f: R \to R$ is defined by $f(x) = x^2 3x + 2$; find f(f(x)).
- 5. Let x be a binary operation on the set Q of rotational number as a * b =
- Check whether * it commutative and associative?
- 6. Show that $a * b = \frac{a+b}{2} \forall a, b \in R$ is commutative but not associative Let $f: X \to Y$ be an invertible function. Show that the inverse of f^{-1} is $f^{-1})^{-1} = f$.