Unit

‘\\‘ w Basic of Computer Organization

=

- 3.1 System Bus

The CPU has to be able to send various data valycs,
devices and components inside your computer as well as the different peripherals and devices
atached. If you look at the bottom of a motherboard you'll see a whole netwotk of lines or
clectronic pathways that join the different components together, These electronic pathways are
nothing more than tiny wires that carry information, data and different signals throughout the
computer between the different components. This network of wires or electronic pathways is
called the 'Bus’.

All communication between the individual major components is via the system bus. The bus
s merely a cable which is capable of carrying signals representing data from one place to another.
The bus within a particular individual computer may be specific to that computer or may
(increasingly) be an industry-standard bus. If it is an industry standard bus then there are advantages
in that it may be easy to upgrade the computer by buying a component from an independent
manufacturer which can plug directly into the system bus. For example most modern Personal
Computers use he PCI bus.

instructions, and information to all the

Backside Bus w |
o e e D
SystemBus | | eyel2 | Main
CPU <, e e R > cache | memory
5%
<§Z:ZZ:ZZZ::Z :Z:Z::ZZ:ZZIZ:.'Z:E:.‘:ZIZZZZIZZZZIIIZ:ZI.{>
Frontside Bus
N
/0 Busses Peripheia

— ——— e ——
i Ll -

Bridge

Fig. 1 : System Bus

1

D

devices

l 9 6 Compure

A compuier's bus can be divided into two different types, Internal and .

The Internal Bus connects the different components inside the case: The CPU_ ¢ e
and all other components on the motherboard. It's also referred 10 as the Sys

The External Bus connects the different external devices, peripherals, expansion slots, |

and drive connections to the rest of the computer. In other words, the External Byg allows Pony
devices to be added 1o the computer. 1t allows for the expansion of the COMPULEE'S canay v
It is generally slower than the system bus. Another name for the External Bus js the E M
Bus. KM!":

RO IE(;AN'ZA_%
%

Adter this study we can divide the system bus in three types. These are ag follows;
3.2.2 Address bus

3.2.3 Data bus ;

3.2.4 Control bus

Now we can discuss one by one as in following way:

3.1.1 Address bus:

Data is stored, manipulated and processed in system memory at various locations, Systen
memory is like a large sea of information full of fish (data). Our computer has 1o move informatig,
in and out of memory, and it has to keep track of which data is stored where. The
knows where all the fishes are. but it has to transmit that informatio

\ N to the CPU and ghey
devices. It has to keep a map of the different address locations in memory, and it has 10 be abie
to transmit and deseribe those memory locations to the other components so that they can agcess

the data stored there, The info used 1o describe the memory locations travels along the addres;

bus. The size or width of the address bus directly comesponds to the number of address locatioss

that can be accessed. This simply means that the more memory address locations that a processor

can address, the more RAM it has the capability of using. It makes sense, right?
So An address bus is a computer bus that is used to specify a physical address. When a processor
or DMA (Direct Memory Access)-enabled device needs 1o read or write to a memory location,
it specifies that memory location on the address bus (the value to be read or written s sent on
the data bus). The width of the address bus determines the amount of MEMmOory a system e
address. For example, a system with a 32-bit address bus can address 232 (4,294,967,296) bytes,
or 4 GB. of memory. Early processors used a wire for each bit of the address width. For
example, a 16-bit address bus had 16 physical wires making up the bus, As the bus becomes
wider, -this approach becomes less convenient and more expensive 1o implement. Instead, some
modern processors make the address bus faster than the data bus, and send the address in W
parts. For example a 32-bit address bus can be implemented by using 16 wires and sending the
first half of the memory address, immediately followed by the second half, For example A 286
processor with a 16 bit address bus can access over 16 million locations, or 16 Mb of RAM.
A 386 CPU with a 32 bit address bus can access up to 4 GB of RAM. OFf course, at the presest
time, due to space and cost limitations associated with the average home computer, 4GB of RAM

il
is not practical. But, the address bus could handle it if it wanted 1©°
Address bus is also known as memory bus,

S OF CoMPUTER ORGANIZAT
i

197

Pevwrr F—_j

A Address Bus
uang A31.A3
R
auet
CLK

Byte Enabies
BE72g=

Cata Bus
063 -0

Recseticn

Fig.2 : Presentation of Address bus (Address bus A31-A3)
3.1.2 Dara Bus

i i ing diffi ircuit with wire carrying a
A data bus is a group of wires connecting different parts of a cireuit wit 3
different signal. The data bus is connected 1o the inputs of several g:nesland to 1_hc outputs of.
several gates. A data bus may be time multiplexed to serve different i’unchon? at different times.
i ive information onto the bus line but several gates may receive
Atany time n!ﬂy one gate may drive info T e b
it. In general, information may flow on the bus wires in bot
to as a bidirectional data bus. .
Th . they are address bus and a data bus. The data bus transfers
coai e iR address sbout where the data should go. A bus
dita and address bus transfers information or LW . il bua
which allows daa to be transferred faster, which makes applications run faster. The local bus is
of hi 1s directly to the processor. Many military s'_t:stems are compatible with
o @Is"spttdsa hmll'm’i connec yial systems are not. This system is used ﬂ:_w command and
“M)'. lmnsl;'m:mr:mten military spacecraft components. subsystems and instrumcnts, and
er
within complex components themselves. : : b i
§ ; digital information. A data | ; .
. The main work nra-m_w:mw.sm;i;:::m dls.pa.rts of a circuit with wire cmyrmg a:irfmm
Btoup or collection of wires s 'anuﬁ" of several gates and 10 th:%:r:: :.in::wmmlsx(
A %T&mamgcmnﬁﬁpmﬁ o serve different functions al di]
may be time mu

; 98 Comptrieg URG"‘N"'-\IT
Uy

architecture which is also developed by 1BM is used for defector standard. ang j5 Widg

for high performance. Thus. the main function of the data bus is 1o conneer the syg; I}-
external devices. There are many types of data bus, which can connect the PC 10 the gyop: e
other external device in order to download software's. Thus data bus is a media whjgy, s g
the data from one place 1o another. ly

Control

Microprocessor

32 wires

Memory

Registers| 32 wires

Fig. 3: Representation of Data Bus

7.1.3 Control Bus

A control bus is a computer bus, used by CPUs for communicating with other devices withi
the COmPute_r. W}_liln the address bus carries the information on i'hich :l::icje:.m CPU is
communicating with and the data bus carries the actual dara being processed, the control bs
carries cn[mnan:ds from the CPU and retums status signals from the devices. for example if the
data is being read or written to the device the appropriate line (read or write) wjll be active.

i o COMPUTER ORGANIZATI 1 99

Coniral Bus

Centrsl Processing
Unat

Extamal
Inpiitpr - Conmections

Priber
Mol
Mouge, B

Fig. 4: Control Bus

3.2. Instruction Cycle

A program residing in the memory unit of the computer consists of a sequence of instructions.
The program is executed in the computer by going thought a cycle for cach instruction. Each
instruction cyele in tum is subdivided into a sequence of subcyeles or phases. In the basic
computer each instruction cycle consists of the following phases :

Fetch an instruction from memory.

1
2 Decode the instruction.

3. Read the effective address from memory if the instruction has an indirect address.
4.

Execute the instruction.
Upan the completion of step 4. the control goes back to step | 1o fewch. decode and exeeute
the next instruction. This process continues indefinitely unless a HALT instruction is encountered.
Fetch and Decode
Initially, the program counter PC is loaded with the address of the first instruction in the
program. The mum}e counter SC is cleared 10 0. providing a decoded timing signal Ty, After
eash clock pulse. SC is ineremented by one, so that the timing signals go through a sequence Ty,
T,. T, and so on. The microoperations for the fech and decode phases can be specified by the
following register transfer starements.
Tz AR « PC
To IR « MAR] PC « PC * |
'['I.- i _DIJ-—"Q."«W'RLI: - 14). AR & IR (0 = 11} 1 « IR(15)
Since only AR:I is cm::lcml 0 the address inputs of memory. it is necessary to transfer the

200

address from PC to AR during the clock transition associated with timing signal Ty The ;¢

read from memory i then placed in the instruction register IR with the clock ransiton gy ey

with timing signal T,. At the same time, PC is incremented by on¢ o prepare if for IJ'T:SMaod

of the next instruction in the program, At time T, the operation code in IR is decoded, g -2

bit is transferred to flip-flop 1. and the address part of the instruction is transferred 'toA"mN

that SC is incremented after each clock pulse 1o produce the sequence T, Ty and T W Nog
2

COMPUTER Orgy,
Nizyp,
oy

T

Fig. 5 : Register transfers for the feteh phases.

Figure shows how the first two register transfer statements are implemented in the bus

system. To provide the data path for th
to achieve the following mn::mio:_r the transfer of PC to AR we must apply timing signal T

1. Place the content of PC i
il onto the bus by making the bus selection inputs 5,8, equal ©

2. Transfer the content of the bus 1o AR |

- i Yy enabling the LD
) The next elock transition initiates the transfer fmgpc mpl.“ HGEHE
implement the second statement to AR since T, = 1. In order

4 OF CoMPUTER ORGANIZATION

201

Ty IR« M[AR), pC PC 41

itis pecessary 10 1S ll_mmg S1gnal Ty 10 provide the followin g connections in the bus system-
Enable the réad input of memory,
Place the conicnt of memory onio the bus by making §,3,5, = 111.
- Transfer the content ofllhc bus t0 IR by enabling the LD input of IR. +
, Increment PC by enabling the INR input of pe,

The next clock transition initiates the read and increment operations since Ty = 1.

figure duplicates & portion of the bus system and shows how Ty and T, are connected to the
ool inputs of the FEgISters, the memory, and the bus selection inputs. Multiple input OR gates
- included in the diagram because there are other control functions that will initiate similar

jons.
petermine the Type of Instruction

The timing signal that is active after the decoding is T;. During time Ty, the control unit
gelermines the 1ype of Instruction that was just read from memory. The flowchart of Fig. presents
aiitial configuration for the instruction cycle and shows how the control determines the instruction

after the decoding. The three possible instruction types available in the basic computer are
wiﬁ:d in Fig.

Decoder output Dy is equal to 1 if the operation code is equal to binary 111. From Fig. we
ermine that if Dy = 1, the instruction must be a register-reference or input-output type. If Dy
« 0, the operation code must be one of the other seven values 000 through 110, specifying a
memory reference instruction. Control then inspects the value of the first bit of the instruction,
which is now available in flip-flop 1. IFD; = 0 and [= 1; we have a memory reference instruction

with an indirect add It is then v 1o read the effective address from memory. The
wicrooperation for the indirect address condition can be symbolized by the register transfer
stalement.

AR « M [AR]

Initially, AR holds the address part of the instruction. This address is used during the memory
read operation. The word at the address given by AR is read from memory and placed on the
common bus. The LD input of AR is then enabled to receive the indirect address that resided in
the 12 least significant bits of the memory word.

The three instruction types are subdivided into four separate paths. The selected operation is
ativated with the clock transition associated with timing signal T;. Thiz can be symbolized as
follows :

TDiT: AR < MIAR]
75175 Mothing ' -
D,I'T5: Exceute @ rcgisl.cr-rtl'tre.ncc ms.mmm”
D,IT;: Execute an input-output instruction

i ; b = 0 tered. it is not necessary to do
When _reference instruction with 1 = 0 is encoun
Mything s;;mt'}'\f?ffmiﬁmaddmﬁ is already in AR, However, the sequence counter SC must

202 CoMPUTER Opg A

be incremented when D'.T, = |, so that the execution of the memory reference 3

be continyed with timing variable T, A register-reference or input-output 'I"“-"llcliu%‘h
executed with the clock associated with timing signal Ts. After the instruction is exmu“" N
cleared (o 0 and control retumns to the fetch phase with Ty = 1.

0

i

I

Decode epcration code i (81412 - 1:
AR o= IR 00- 1), 1= i 015

Fig. 6 : Flowchart for instruction cyele (initial configuration)

Note that the sequence counter SC is cither incremented or cleared to 0 with every positive
clock transition. We will adopt the convention that if SC is incremented, we will not write the
statement SC « SC + 1, but it will be implied that the control goes to the next timing signal in
sequence. When SC is to be cleared we will include the statement SC & 0.

The register transfers needed for the execution of the register-reference instructions are
presented in this section. The memory reference instructions are explained in the next section.
The input-output instructions are included in Sec, 5.7,

Register-Reference Instructions

Register-reference instructions are reco
instructions use bits 0 through 11 of the i
12 bits are available in [R(0-1)]. They

gnizagd by the control when D=1 and | ="-.T"“’
nSIruetion code o specify one of 12 instructions. Thest
were also transferred to AR during time Ty

pasic OF COMPUTER ORGANIzZATy 203

control functions and mimmlions - ; . listed in
; i . are lis
]Ih;"ﬁg instruclions are executeg for the register-reference instructions

: with the ¢} iti ; ith timing variable T,
fabl conirol function needs U'Lc B-uplen relation oDc:[l'rral;s :;?i:hﬂr é‘::;‘:igifz:négﬁvenicnce by
posymbolr. Thc Sontedl Runction s distinguished by one of the bits n (R(0 — 1) By assigning
e symbol B; to bit i oF IR, all conteol fungiions ¢ap pe simply denoted by ri3. For example, the
" puction CLA has the hml_mlai code 78000 (see table), which gives the binary equivalent
gl Iﬂﬂﬂ_ 0000 md The first b]lls a 2ero and is equivalent 1o I°. The next three bits 'r.m'lsli_l*»ltc
peoperation code an ;l“’ - -ognized from decoder output D,. Bit 11 in IR is 1 and is recognized
qon By The control function that initiates the Microoperation for this instruction is D41'T; By,
By cxecuﬂnnofaresmu-ﬂfmocinmuimismmMst. The sequence counter
s is cleared 10 0'and the control gocs back o fetch the mext instruction with timing signal Ty,

Table : Execution of Register-Reference Instructions
= D,I'Ts=r(common to all register-reference instructions)
IR(i) = B; [bit in IR (0-11) that specifies the operation]
r SC«0

Clear SC
CLA !'B”! AC 0 Clear AC
CLE By E«0 Clear E
CMA By AC + AT i Complement AC
CME rB,: E—E Complement E
CIR 1B, : AC «shrAC,AC(15) « E, E « AC(0) Circulate right
CIL rBy: AC & shlAC, AC(0) « E, E «— AC(15) Circulate lefi
INC 1B,: AC+—AC + 1 Increment AC
SPA B, : If(AC(15)=0)then (PC & PC +1) Skip if positive
SNA B, : IF(AC(15) = 1) then (PC & PC + 1) Skip il negative
SZA B, : IF(AC=0)then PC «PC + 1) Skip if AC zero
SZE B, IF(E=0)then(PC &PC+ 1) Skip if E zero
HLT 1B, : S« 0 (S is a start-stop flip-flop) Halt computer

The first seven regisl'ea%refelmce instructions perform clear, complement, circular shiﬂ._ and
ingrement microoperations on the AC or E registers. The next four mstructions cause a skip of
Ihe next instruction in sequence when a stated condition is sauisiio_d. Tha skipping of |h_: instruction
i schieved by incrementing PC once again (in eddition, it is being incremented during the fetch
Phase at time T,). The condition control statements must be recn-_gqnmd as part of the noﬂmﬂ
“nditions. The AC is positive when the sign bit in AC (15} = 0; it is negative when AC(15) =
. The content of AC is zero (AC = 0) if allthe flip-flops of the m-glﬁs‘;ter are zero. Tn,e HLT
sinuction clears a start stop flip-flop § and stops the sequence counter I;n counting. To restore
" aperation of the computer, the start-stop flip-flop must be set manually.

%3, Memonry Subsystem organization
In order to specify the microoperation needed for the e
|

204

necessary that the function that they are intended to perform b: ‘::::::lil;"::'::':; l"’”‘iﬂqu
to table, where the instruction are listed, we r!“d tha go-mwufkds is usually | b m‘
description. This is because the explanation of an instruction in o ety

COMPUTER OHU*\NI
N

enough space is available in the table for such a lengthy explanation "“1- Will now shey :
function of the memory-reference instructions can be defined precisely by means o
transfer notation. Bisy

Table lists the seven memory-reference instructions. The _ﬂel'-"!‘dib'_-i Ou_fl":-“ D, for i =y,
3,4, 5, and 6 rom the operation decoder that belongs to each instruction is included jn L
The effective address of the instruction is in the address register AR and was plaged th“"'""“ll
timing signal T, when I = 0, or during timing signal T; when i - 1. Tlle c_xoculmn ;:;l‘lmE m%.
reference instructions starts with timing signal T, The symbolic description Pf each j on
specified in the table in terms of register transfer notation. The wua!_ ea_zec::mon of the 1':.5{,.,“'l
in the bus system will require a sequence of microoperations. This is data

3 Sloed , | gt
memory cannot be processed directly. The data must be read from memory to a reg

they can be operated on with logic circuits. We now explain the operation of each i

P NStruCtion gy
list the control functions and microoperation needed for their execution. A flowchart that summgry,
all the microoperations is presented at the end of this section.
Table : Memory Reference Instructions
Symbaol Operation Symbolic description
decoder

AND D, AC — AV A M[AR]

ADD D, AC «AC+ M[AR], E«C,,

LDA D, AC « M[AR]

STA D, M[AR] « AC

BUN D, PC « AR .

BSA n, M[AR] < PC, PC « AR + |

187 D, MIAR] M[AR] + 1.

IPMIAR] + 1 = 0 then PC = PC +1
AND to AC : This is an instruction that performs the AND logic operation on pairs of bis

in AC and the memory word specified by the effective address. The result of the operation ¥
transferred to AC. The microoperations that execute this instruction are -

DyTy: DR+ M[AR]
DyTs: AC «— ACA DR, SC 0
The control function for this instruction uses the operation decoder Dy since this output of

decoder is active when the instruction has an AND operation whose binary code valu is iﬂ
Two timing signals are needed 10 execute the instruction. The clock transition associated ;

{ecified by the cffective address. Remember

i oF COMPUTER OraaNzATION
U‘l:

of DR and AC. The same cipek transition elears SC to 0, transferring control to iMINg
M'm?o to start @ new instruetion cyele, 2
#F:JBD to AC : ‘Ihis instruction adds the coment of the memory word specified by the
gjve address 10 “_w value of AC. The Sum is transferred into AC and the output carry Cou
et ferred to the E (extended accumulator) flip-flop. The microoperations needed to exécute
L instruction are
DTy DR M[AR]
DT AC «~AC+DR, E ~C
iming signals, : : ; «t D, instead
{he same tWo liming signals, T“amd T, are used again but with operation decoder D instea
D which was used for the AND instruction, Afier the instruction is fetched from memory and
% .4, only one output of the operati

on decoder will be active, and that output determines the

of microoperations that the control follows during the execution of a memory reference
ion

oupr ST 0

'l.llh\ Load to AC : This instruction transfe:
Sdress 10 AC. The micreoperations needed to
D,T;: DR+ M[AR]

DyTs: AC = DR, 5C « 0

Looking back at the bus system shown in Fig. we note that thee is no direct path from the
sas into AC. The adder and logic circuit receive information from DR which can be transferred
a0 AC. Therefore, it is necessary to read the memory word into DR, first and then transfier the
woatent of DR into AC. The reason for not connecting the bus tothe inputs of AC is the delay
axountered in the adder and logic circuit. Tt is assumed that the time it takes to read from
acmory and transfer the word through the bus as well as the adder and logic circuit is more than
e time of one clock eyele. By not connecting the bus 1o the inputs of AC we can maintain one
dock eyele per microoperation,

STA: Store AC : This instruction stores the content of AC into the memory word specified
by the effective address. Since the output of AC is applied to the bus and the data input of
memory is connected to the bus, we can execute this instruction with one microoperation :

D;Ty: M[AR] « AC, 5C « 0
BUN : Branch Unconditionally : This instruction wansfers the program to the instruction
that PC holds the address of the instruction to be
&l from memory in the next instruction cyele, PC is incremented at time T, to prepare it for
B address of the next instruction in the program sequence. The BUN instruction allows the
Mogrammer to specify an instruction out of sequence and we say that the program branches (or
Rmps) unconditionally. The instruction is executed with one microoperation :
D,T;: PC &= AR, SC « 0
The effective address from AR is transferred through the common bus to PC. Resetting SC
0 transfors control to Ty, The next instruction is then fetched and exeeuted from the memory
%55 given by the new value in PC.

rs the memory word specified by the effective
execute this instruction are

timing signal T, transfers the operand from memory into DR. The clock transition associued“:
the next timing signal Ty transfers to AC the result of the AND logic operation betweel

B4 . g, Address : This instruction is useful for branching to a
i orlhem;,%l:]g;?cﬁ?;:: m::mim or procedure. When executed, the BSA instruction
!

206

: ction ence (which is available in PC)

: g he next instruction in Sequence _[\\Im 1 intg 4
T::::t:: t;ﬂ:‘:ﬁd :\(1thL; ::}Ecliu‘ address. 1'I_u: -.-!I'Iccuw: n.ddn:g p|}LS one is Il}cn 'Hmrh‘"h
PC 10 serve 8 the address of the first instruction in the subroutine. This operation wag &Ni
in Table with the following register transter ;

M[AR] « PC. PC(_AR+L.. o _
A erical example that demonstrates hn“-_thls instruction is used wm—! a Submulinc .
in Fi;!ﬁ:u BS.~‘\‘ instruction is assumed 1o be in memory at ?,ddre'ss 201 The 1 bit 5 ﬂwh*l
address part of the instruction has the binary equivalent of 135. After tlhe feteh wuh
phases, PC contains 21 which is the address of the next instruction in the program U'II'@%
as the |I‘v:|um address). AR holds the effective address 135. This is shown in part (a) Ufu,cw‘l
The BSA instruction performs the following numerical operation : figy,
M(135)= 21, PC « 135 + | = 136
The result of this operation is

CoMPUTER ()Rc:.wl.
Nig,

: Memary My
shown in part (b0 of the figure. The w0 ma s
return address 21 is stored in memory = Neat instaction

location 135 and control continues with
the subroutine program starting from
address 136. The return to the original
program (at address 21) s
accomplished by means of an indirect
BUN instruction placed at the end of
the subrowtine. When this instruction
is exccuted, control goes to the
indirect phase 1o read the effective
address at location 135, where it finds
the previously saved address 21.
When the BUN instruction is
executed, the effective address 21 is

ab Memony, PC.and AR aitime T,

rhbb‘hm;nnu;:‘axm
Fig. 7 : Example of BSA instruction exccutin

wransferred 1o PC. The next instruction cyele finds PC with the value 21, so control contings i
execute the instruction at the return address.

~ The BSA instruction performs the function usually referred to as a subroutine call. T
mdnrecl._ BUN instruction at the end of the subroutine performs the function referred to 1
subroutine return. In most commercial computers, the return address associated with a subros: |

is stored in either a processor register in a portion of memory called a stack. This is discuss
in more detail in Sec. 8-7.

Itis not possible to perform the operation of the BSA instruction in one clock cycle when
use the bus system of the basic computer. To use the memory and the bus properly, the B
instruction must be execuied with a sequence of two microoperations :

DsT,: M[AR] « PC, AR « AR + 1

DsTs: PC + AR, SC & 0

Timing signal T, initiates @ memory write operation places the content of PC into the bus.#
enables .|hc INR input of AR. The memory write operation is completed and AR is i
by the time the next clock transition oceurs. The bus is used at T :

of
to PC.

3 to transfer the content

3.\“‘: ot COMPUTER OrGanizaTion 207
7 ¢ Inerement and SKip if Zero : This instruction increments the word specified 1b yg::
e address, and iF the incremented value is equal to 0, PCis incremented BY - Lo
et mer usually slores a negative number (in 2 complement) in the memory word. As that
e number is repeatedly incremented by one, it eventually reaches the value of zero: e
1'fc'!'”?(: is incremented by one in order to skip the next instruction in the program- he word
gince itis not possible to increment a word inside the memory, it is necessary 10 Ee |fcwing
St ncrement DR, ?nd store the word back into memory. This is done with the fo
pce of microoperaions :
seue DTy DR« M[AR]
DéT_J,:. DR « DR + 1
DgTg: MIAR] « DR, if (DR = 0) then (PC « PC + 1), SC « 0
1 Flowchart
Cﬂ":““ﬂwchm showing all microoperations for the execution of the seven memory-reference
srustions is shown in Fig. The control functions ar¢ indicated on top of each box. The
Memory - pefceoace ntnachen
ADD [Lba

l (A4 l b, \ DI, Iin.r, '

1 B - AR | l Bk o M {MAR] 1 || B o= 01 (AR} l !

TR e

Fead |- =l J]
T o,

Fig. 8§ : Flowchart for memory-reference instructions

208

Microoperatiing that are performed during time Ty, Tg, or Ty depend on the operatig, \
_Ihis is indicated in the flowchan by six different paths, onc of which the contro] lakeg Yy
instruction is decoded. The sequence counter SC is cleared 1o 0 with the last liming signﬂu-‘q "i
case. This causes a transfer of control to timing signal Ty to start the next instructigy, . %
Mote that we need only seven timing signals to execute the longest instruction (;

compuler can be designed with a 3-bit sequence counter. The reason for using q 4. A
for SC is 10 provide additional timing signals for other instructions that are Presenteg ;

problems section. e

Input-Output and Interrupt

Compt TER Opg A

A computer can serve no usefal purpose unless it communicates with the exteral eny;
Instructions and data stored in memory must come from some input device. Computatipny
must be transmitted to the user through some output device. Commercial computers inclug,
types of input and output devices. To demonstrate the most basic requirements for inpy
outpul communication, we will use as an illustration a terminal unit with a keyboard ang Dn:

3.4 Input-Ourpur Subsystem OrganizaTion

The terminal sends and reccives serial information. Each quantity of information has ¢

of an alphanumeric code. The serial information from the keyboard is shified into the j
INPR. The serial information for

registers icale with a

Moy

ight by
the printer is stored in the output register OUTR, These g
! nication interface serially and with the AC in parallel, T,
input-output configuration is shown in Fig. The transmitter interface receives serial inform
from the keyboard and transmits it to INPR. The receiver serial interface receives informatie
from OUTR and sends it to the printer serially. The operation of the serial cmmtﬁiuh
imterface is explained in Sec, 11-3.

The input register INPR consists of cight bits and holds an alphanumeric input informatie.
The 1-bit input flag FGI is a control flip-flop. The flag bit is set 1o | when new information &
available in the input device and is cleared to 0 when the information is aceepted by the compute: ‘
The flag is needed to synchronize the timing rate difference between the input device and the
computer, The process of information transfer is as follows. Initially the input flag FGI is cleard
1o 0. When a key is struck in the keyboard, an 8-bit alphanumeric code is shifted into INPR md
the input flag FGI is set to 1. As long as the flag is set, the information in INPR cannot be changed
by striking another key. The computer checks the flag bit; if its | the information from INPR i
transferred in parallel into AC and FGI is cleared to 0. Once the flag is cleared, new informatios |
can be shifted into INPR by striking another key.

The output register OUTR works similarly but the direction of information flow is reversed
Initially, the output flag FGO is set 1o 1. The computer checks the flag bit; if it is 1, the informaie
from AC is transferred in parallel to OUTR and FGO is cleared to 0. The oulput device accsf®
the coded information, prints the corresponding character, and when the operation is comp
it sets FGO to 1. The computer does not load a new character into outer when FGO is 0 becat®
this conditions indicates that the output device is in the process of printing the character

pustc

¢ COMPUTER ORGANIZx 13y,

209

o

Reget - onstpt
bormisal

Fig. 9 : Input-output configuration

Input-Output Instructions : Input and output instructions are needed for transferring
information te and from AC register, for checking the flag bits, and for controlling the interrupt
facility. Input-output instructions have an operation code 111 and are recognized by the control
when Dy = 1 and 1= 1. The remaining bit of the instruction specify the particular operation. The
control functions and microoperation specify the panticular operation. The control functions and
microoperation for the input-output instructions are listed in table. These instructions are executed
with the clock transition associated with timing signal T;. Each control function needs a Ruloim_n
relation D4IT5, which we designate for convenience by the symbol p. The o:'mlml. function is
distinguished by one of the bits in [R(6-11). By assigning the symbol B, to bit i of_]R. all control
functions can be denoted by pB, for i = 6 though 11. The sequence counter SC is cleared to 0
when p = D,IT; = 1.

D,IT, = p (common to all input-output instructions) .
IR(i) = B, [bit in IR (6-11) that specifies the instruction]

p: SC&«0 Clear 5C
INP pB,: AC(0-7) & INPR. FGl&0 Input character
OUT pB,;; DUTER & AC(0-T), FGO & 1] Olrpul clhnracl:-
SKI1 pB, : 1f(FGI = 1) then (PC «PC+1) zkl:p on mplm ;g
SKO pB, I£(FGO = 1) then (PC &= PC+ 1) ip on output flag
4 : 1 Interrupt enable on
e PB, e Interrupt enable off

10F B,: [EN«0

yi 0 ComplTer Ogg
» "\'\'lh,
The INP instruction transfers the input information from INPR.into the cight 1y,)
D!'AC and also clears the input flag to 0. The OUT instruction transfers the cight Icag mﬁh’i
bits of AC into the output register OUTR and clears the output flag to 0. The next twg j -
in Table check the status of the flags and cause a skip of the next instruction if the nam%%
instruction that is skipped will normally be a branch instruction 1o retum and check ||;=EﬁLs L
The branch instruction is not skipped if then flag is 0. If the flag is 1. the branch jpg i
skipped and an input or output instruction is executed. (Examples of input and ouipy, o
are given in Sec 6.8), The last two instructions set and clear an interrupt enahle fl;
The purpose of 1EN is explained in conjunction with the intermupt operation,
Program Interrupt

Pog,

P-Nlop gy,

The process of communication just described is referred 1o as programmed contrg)
The computer keeps checking the flag bit. and when it finds it set, it initiates an inr[w
transfer. The difference of information flow rate between the computer and that of “':En%
output device makes this tvpe of transfer inefficient. To see why this is inefTicien, m"si'd'!;u
1

It cvile =il =l

Brans w ek e |
=1

EX -1
Re=q

Fig. 10 : Flowehart for interrupt cycle
computer that can go through an instruction cycle is 1 ps, Assume that the input-output devic
can transfer information at a maximum rate of 10 characters per second. This is equivalent 10
one character every 100,000 ps. Two instructions are executed when the computer checks
flag bit and decides not to transfer the information. This means that at the m:ximmn rate, ¢
computer will check the flag 50,000 times between each transfer. The computer is wasting i

= COMPUTER ORGANIZATION
e ol ATION 21 1
ing the flag instead of do;
b - ative 1o the programy d: & some other useful processing task.
Al dlt\m::n it is ready for :hcn::a q?mm"m procedure is o let the external device inform the
M’"lﬂi; wpe of transfer uses the :::r:-ul . I?E meantime the computer cah be busy b OIIW:
check the flags. However, “-hmm nm].”)" While the computer is running ngm"d.
4 sy i flag is set, the computer is momentarily interrupte
P it Program and is informed of the fact that a flag has been set
8 puter deviates momentarily from whay jy is doing to take care of the i'npul. or cutput
fer, It then TELIMS 10 “_m current program to continue what it was doing before the interrupt-
The interrupt Fna.blc ﬂIPT.DP IEN can be set and cleared with two instructions. When [EN
B m_“ {\mh{l)ht]-0F mﬁ.‘m'i“"" the flags cannot interrupt the computer. When [EN is
aw ! with the 10N instruction), the computer can be interrupted. These two instructions
o t?: !:I.‘:igl‘ﬂIHch with the capability of making a decision as to whether or not to use the
erupt factll Y. .
,gm'“ﬂm way that the interruptus handled by the compuier can be explained by means of the
fowehart of Fig. An injerrupt fip-flop R is included in the computer. When R = 0. the computer
e through an instruction cycle. During the execute phase of the instruction cycle IEN is
Tpecked by the control. _If itis 0, it indicates that the programmer does not want 1o use the
sperrupl. O control continues with the next instruction cycle. 1f IEN is 1. control checks the flag
4is. If both flags are O, it indicates that nightjar the input nor the ouiput registers are ready of
snsfer of information. n this case, control continues with the next instruction cycle. 1f either flag
wsetto 1 while IEN = 1, flip-flip R is set to 1. At the end of the execute phase, control checks
e value of R, and fit i equal to 1, it goes to an interrupt eycle instead of an instruction cycle.
The interrupt evele is a hardware implementation of a branch and save return address
speration. The return address available in PC is stored in a specific location where it can be found
Jster when the program rewms io the insiruction at which it was interrupted. This location may
b o processor register a memory stack, of a specific memory location. Here we choose the
memory location at address 0 as the place for storing the return address. Control then inserts

| uddress 1 into PC and clears IEN and R sot that no more interruptions can occur until the interrupt

request from the flag has been serviced.

An example that shows what happens during the interrupt eyele is shown in Fig. Suppose that
@ interrupt oceurs and R is set to 1 while the control is executing the instruction of address 235,
At this time, the retum address 236 is in PC. The programmer has previously placed an input-
oulput seFvice program in memory starting from address 1120 and a BUN 1120 instruction at
address 1. This is shown in Fig.))

When control reaches timing signal To and finds that R = 1, it procecds with the interrupt
excle, The content of PC (256 is stored in memory location s SopRsis; ol et
0. At the beginning of the next instruction cycle, the instruction that 1§ read from memory is
in address | since this is the content of PC. The branch instruction of address | causes the
Pogram 1o transfr to (he inpul-outpul service program & address Idu.m' This p":grfm I":h“ks_'h‘

determines which flag is set, and then transfers the required inpul o output information.

212

Onee this is done, the instruction ION is executed to set IEN to 1 (to cf“b';' further i,
and the program returns to the location wheel it was interrupted. This is shown in Fi;m”“l

COMPUTER Qg AN,

Memany Memary
L] L] %
o BUR 1% PCml| 0. BUN 1120
i3 :
Peary| van brid Main
progeam program
o T 5
e (]
progran program
| BN 0 1 OBUK 0
2 Befoec imterupn (b} Abser intermupt cycle

Fig. 11 : Demonstration of the interrupt cycle

The instruction that retumns the computer to the original place in the main program s 5
indirect instruction with an address part of 0. This instruetion is placed at the end of the 1
service program. After this instruction is read from memory during the fetch phase, control g,
to the indirect phase (because 1= 1) to read the effective address. The effective address i, o
location { and is the return address that was stored there during the previous interrupt cyele. The
execution of the indirect BUN instruction results in placing into PC the return address fro
location 0.

Interrupt Cycle

We are now ready to list the register transfer statements for the interrupt cycle. We j
cycle is initiated afier the last execute phase if the interrupt flip-flip R is equal to 1. This flip-Flog
is set to 1 if IEN = 1 and either FGI of FGO are equal to 1, This can happen with any cloc
iransition except when timing signals Ty, T) or T, are active. The condition for setting flip-flop
R 10 1 can be expressed with the following register transfer statement :

T'4T", T', (IEN(FGI + FGO);

The symbol + between FGI and FGO in the
This is ANDed with IEN and Tl 15

We now modify the fetch and decode
liming signals T, Tyand T,
that the fetch and decode p

Re1

phases of the instruction cycle. Instead of using only
(as shown in Fig.) we will AND the three timing signals with R’
hases will be recognized from the three control functions R'Ty R'T;
- The reason for this is that afler the instruction is executed and SC is cleared to 0, the

control will go through a fetch phase only if R = 0, Otherwise, i R.= 1, the control will go through
an interrupt cyele. The interrupt cycle stores

the retumn address (available in PC) into memory
location 0, branches to memory location 1, and clears IEN R, and 8C 16 0. This can be done wifh
the following sequence of microoperations :

10

control function designates a logic OR operation.

¢ o CONPUTER ORGANIZATION 213
RTy:
RTy:
RT:

AR =, TR « pc

MIARI Lo T'F., PC 0

PC*'PC*L[EN'-—!J.Rc—U,SC«—U -
puring the first timing signal AR is cleared to 0, and the content of PC is transferred 101

. i ; at
register TR. With the second timing signal, the return address is stored in memory &

,ﬂl’f’;)o' and PC is cleared t0 0. The third i

3 control goes back to Ty by clearing

 [E R,

ing signal increments PC to 1, clears IEN :l[::dhas

SC to 0. The beginning of the next instruction c¥ o
adition R'Tqand the content of PC is equal to 1. The control then goes though an insirt

:‘15 that fetches and executes the BUM instruction in location 1.

55 Complere_Compurer Descriprion

The final flowchart of the instruction cycle, including the interrupt cycle for the basic compl:ﬁz
. gpown in Fig. The interrupt flip-flop R may be set at any time during the indirect or exe e
B Control returns 10 timing signal Ty after SC is cleared to 0. If R = 1, the computer 'g .
phises: an interrupt cycle. If R = 0, the computer goes through an instruction cycle. If 1an
_gruction is one of the memory-reference instruction, the computer first check if ﬂ;lcc 'lshaﬂ
'lﬂ!“mﬁ address and then continues to execute the decoded instruction according to the flowe !
r{d;ig. If the instruction is one of the register-refirence instructions, it is executed w:‘ﬂ;‘ Dnn: o
the microoperations listed in table. If it is an input-output instruction, it is executed with o
the microoperations listed in Table, . s B

Instead of using a flowchart, we can describe the operation of the computer wnlh_a Isand

ister transfer statements. This is done by accumulating all the control functions
1:1,;:;!'Iroopel‘al‘mnss in one table. The entries in the table are taken from figs. and :ab.lts

The control functions and microoperations for the entire computer are Islamized in 1:able. 'E:
register transfer statements in this table describe in a concise from the mle_rnal orgmlzat_lon_c:c 4
basic computer. They also give all the information necessary for the design oi'_ll:ée li_isi';'h‘: -
of the computer. The control functions and conditional mﬂlm'ﬂm? ::'!E'sm":cr':opﬁations
formulate the Boolean functions for the gales in the control l:::; memlw s
Wwiﬁﬁ lhem‘:EI:lT imﬁ;mmﬁﬁ m :::lansﬁﬁm of a digi[al system but also for

i -

specifying the logic circuits needed for its design.

3.6 Register Transfer Languages

1o odules that accomplish a specific
i is an interconnceted of digital hardware m : :

A d:glla'l system is El:;: Digital system vary in size and complexity fn:rm a few mtc‘;;:aw
mlll‘on.natmn processing task. y il ing digital computers. Dugl-l,a_l system design
sircuils to a complex of |memom:=t§c ! Ml.ﬁ“ are consiructed from such digital components
:\'an‘ahly uses a madylnr ap:;r:rc : w““’d"mml logic. The various modules are interconnected

register, decodes, arithmetic elemet digital computer system.
with common data and control paths to form

‘\ ’

ComMPUTER Oggy,
214 Maan,
Digital modules are best defined by the registers they contain and the Opetitions y
F‘L’Tlhn%md on the z'll::“'smrz:l dl:! them. The operations executed on _'5‘!'“ stared in reg; b o
called microoperations. A microoperation is an ¢lemental operation]5"”'-‘"‘“""3 on the infoy,.
stored in one are more registers. The result of the OpCIENInn, may replace the Previoyg i
information of a register or may be transferred 1o another registers : Examples of mic .
are shift, count, elear and load. Some of the digital components are registers that jp, Moy
microoperations for example a counter with parallel load is capable of perfopy,
microoperations increments and load. A bidirectional shift register is capable of perfy
shifi right and shift left microoperations.)
The intemnal hardware organization of a digital computer is best defined by Specifying .
1. The set of register it contain and the function,

2. The sequence of microoperation performed on the binary information stored iy he

in
mingglh

registers.
3. The control that initiates the sequence of microoperations,
The symbaolic notation used 1o describe the micruupcmiic_m mmsfcr. among registers s cal
a register transfier language. The term “register transfer” implies the availability of hardwape logs,
circuits that can perform a another register. The word language is bom!wcd from PrOgrammey,
Who apply this term to programming language. A programming language is a procedure for v
symbols t specify a given computational process. Similarly a natural language such as Engps
is @ system for writing symbols and combining then into words and sentences for the Purpose of
Communication,
A register transfer language is a system for ex
sequence among the register of a digital module.”

It is a convenient tool for describing the internal organization of a digital computer in concise
and precise manner. It can also be used to facilitate the design process of digital system,

Register transfer : In computer science, register transfer language (RTL) is a kind of

intermediate representation (1) that is very close to assembly language, such as that which is ussd

in a compile. It is basically an operation which is used to transfer in formation from one place 1o
another Academic papers and textbooks also often use a from of RTL as an architecture neutral
assembly language. i

RTL is also name of a specific IR
other compilers such as zephyr or the

pressing in symbolic form the microoperatiog

used in the GNU compiler collection (GCC) and seversl
European compiler project cerco and composure.

3.7 Design of Basic Compurter

. ot COMPUTER ORG.\mz,.n-mx
z1C

215

ly from & commereial
ed circuit type 74 163.

!H i '
i i = Fig, 4=
ith sixteen 8 > | multiplexers ; G shown in Fig.
ted with six Plexers in a configuration similar to the one : B
"ﬂf‘ﬂ:rc going 1o show hnw 10 design the control logic gates. The next section deals with th
i o of the adder and logie circuit associaed with AC.
=

AR TH

KTy
: ML= TR, PC =0
E'T:

TR~ MIARL PCo=PC o)

AR = TRAD= 113, P o= FR(05)
Dy Dy o= Devode MR1L2 - 14

|

=0 (Nkemory - reference:

Cindinece) = | a) ideveny

The basic computer consists of the following hardware components:

A memory unit with 4096 words of 16 bits each

Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR and SC

Seven flip-flop: 1. S, E, R, IEN, FGI and FGO

Two decoders @ a 3 * & operation decoder and a 4 = 16 timing decoder
" A 16-bit common bus

Control logic gates

el o

Adder and logic circuit connected 1o the input of AC

11

Fig. 12 : Flowchart for computer operation

216

CoMPUTER Dﬂgmmm
Wy

Table : Control function and Microoperations for the Basic Compupey

Fewch R'T,: AR i— PC g ———--_,\
b s LPC —PC+
Decode i:' é:“ Mli;?}:_! Precode 1R (12 — 14},
' AR — IR(0-11), 1 = 1R(15)
Indirest DT, AR — M[AR]
Interrupt :
T TAENFG « FGO): R 41
RT.: AR 0. TR + PC
RT,: M[AR] < TR, PC =0
RT,: PC+—PC+ 1. IEN &0, R +0,5C «0
Memory-reference :
AND D,T,: DR + M[AR]
DT, AC +— ACADR.SC+0
ADD D,T.: DR +— M[AR]
D,T,: AC «— AC+ DR, E +C_,5C +0
LDA D.T; DR +— M[AR]
D.T,: AC +DR. SC+0
STA D,T,: M[AR] é= AC. SC 0
BUN D.T,: PC AR, SC 0
BSA D,T,: M[AR] + PC, AR «— AR + |
D.T,: PC += AR, 5C « 0.
15z D,T,: DR+ M[AR]
D,T,: DR« DR + |
D.T,: MIAR] « DR. If (DR = 0) then (PC ¢~ BC + 1), 8¢ ¢ ¢
Register-reference:

AT, = ricommen 1o all register-reference instructiong)
IR(i) = B, [bit in IR (0-11) that specifies the operation)

" EC+0

CLa A, AC =0

CLE B, E«0

[YT rB, : AC o— AC

CME B, : E«E

CIR B, ACo—shrAC.AC(IS]e—E_Ea—AC{D]
CiL i, &Cc—!.hl.g\C.AC{O}i—E.Ei—-ACﬂS}
INC B, AC —AC + 1}

SPA i, ITEACT(15) = 0) then (PC «— PC + 1
SNA B, : ITIACIIS) = 1) then (PC = PC + 1y
S.ZA B, : IT(ACT = 0) then PC « P + 1y

SZ2E B, : IT(E = 0) then (PC+—=PC+ 1)

HLT B, :

Input-output

5S¢0

COF CoMPUTER ORGANIZA T
e

5ol Logic Gates
N

plock diagram of the contrg] 1o
i decoders. the | flip-flop, ang b

wmlh' . AC bits 0 through 15 1o check
ﬁ-':;:;n'lugh 15 to check if DR
; . sutpuls of the control logic cirgyj are ;

gignals to control the inputs of the nine registers.
, Signals 10 control the read and write inputs of memory.
. signals o set, clear, or complement the flip-fops.
i Signals for Sy, S, and Sy 10 select 3 register for the bus
= signals 1o control the AC adder and logic circuit.

BIC gates is shown in Fig. The inputs to thi

217

5 circuit come

: : |
its 0 through 11 of IR. The other inputs to the ﬂ*{"‘g;
ifAC = 0 and 1o detect the sign bit in AC (155

= 0: and the values of the seven flip-flops.

The specifications for the various control signals can be obtained directly from the list of

ger transfer statements in Table,

1.8 control of Registers and Memory
—_—

The registers of the computer connected to common bus system are shown in Fig.. The

inputs of the registers are LD (load), INR (increment). and CLR (clear). Suppose that we
ant to derive the gate structure associated with the control inputs of AR. We scan Table to find

4l the statements that change the content of AR:

R'Ty AR « PC
R'T;: AR & IR(0-11)
DTy AR « M[AR]
RTy; AR & 0

DsT,: AR « AR + 1

apulsions as follows ;)
LD(AR) = R'Ty + R'T, + D',IT,

The first three statements specify transfer of information from a register of memory 1o AR,
The content of the source register or memory is placed on the bus and the content of the bus
istransferred into AR by enabling its LD control input. The fourth statement clears AR to 0. The
st statement increments AR by 1. The control functions can be combined into three Boolen

D,IT; = p (common to all

CLR(AR) = RT;

IR()=B, [i=6,7.8.9, 1

inpul-output instructions)

8 EC 0 i
[T Pl ACIO-T) 4~ INPR, FGI 0
ouT pB OUTER +— AC{O-T), FGO « 0
SK1 P, : IRFGL = 1) then (PC + pe 4 1)
SKO pB,: IT{FGO - D then (PC «— pe o+ 13

.:FF' Mo [-1¢ IEN &1

" £, IEM « 0

—

12

INR(AR) = DsT,

"eded to control the read and wrile inputs
put of memory is derived by‘smrrmg'::t
e reaq operation is recognized from

where LD(AR) is the load input of AR, CLR(AR) is the clear input Iut‘ AR, and INR(AR)
i the i:lcrem[:a(nl I:p:ul of AR. The control gate logic associated with AR is shown in Fig,
Ina simitar fashion we can derive the control gates for the other registers as well as the logic

of memory. The logic gates associated with the read
e to find the statements that specify a read operation,
symbol & MIAR]

218

CoMPUTER Qg
ANIZ,.
Ay,
¥ + DT,
Read = R'T; + DIT; + (Dg * Dy D2 IE:). ion above
The output of the logic gates that implement the Boolean expression above musy h"'“'?nnq
P gIc § %

1o the read input of memony.

Fig. 13 : Control gates associated with AR.
Control of Single Flip-flops

The control gates for the seven flip-flops can be determined in a similar manner. For ¢

X
Table shoes that IEN may change as a result of the two instructions [ON and I0F, s
By IEN « |
pBg: IEN « 0

where p = D,IT; and B, and B are bits 7 and 6
of the interrupt cyele IEN is cleared to 0.

RT;: IEN & 0
If we use of a JK Nip-flop for IEN, the control gate logic will

Control of Common Bus

I'I1n: 16-bit common bus shown in Fi
decimal number shown with cach
applied 1o the selection inpuis in

of IR, respectively. Moreover, at the end

be as shown in Fig.

2. is controlled by the selection inputs S, §, and §;. The

bus input specifies the equivalent binary number that must be
; i order 1o seleet the corresponding register. Table specifies the
binary numbers for S,. S, and Sy- The decimal number shown with each bus input specifies the
equivalent binary number that must be applied 10 the selection inputs in order to select e
our[cspnn_dmg register. Table specifies the binary numbers of S, 8 and Sg that select each
register. Each binary number is associated with a Boolean variable X through X, corresponding
1o the gate strueturc that must be active in order 10 select the register or memory for the bis
For example, when %y = 1, the value o' 5,8, 5, must be 001 and the output of AR will be selected
for the bus. Table is recognized as the truth table of g binary encoder. The placement of the
:::3:;; at the inputs of the bus selection logic is shown in Fig. The Boolean funetions for e
are

13

oF COMPUTER ORGANIZA 10y 21 9
2C
A

Sp =Xy +
5 =%

R TR
”‘1”‘&"‘1
52=X‘Px51xﬁ_x?

Fig. 14 : Control inputs for 1EN
Table : Encoder for Bus Selection Circuit

Inputs Output Register
selected

X X3 X3 X, X X, ;2 8, 8 S, for bus
0 0 0 0 0 0 0 0 0 0 None
10 0 0 0 0 o o 9 AR
0 1 6 0o 0o o o o 1 0o PC
0 i 1 o 0 0 1 [I DR
[1} 1] 0 | 0 0 0 | 0 0 AC
0 0 0 0 I 0 0 1 0 1 IR
0 il 0 L | 1 1 1 0 TR
0 0 0 0 0 1] 1 1 1 | Memory

To determine the logic for each encoder input, it is necessary to find the control functions that
flace the corresponding register onto the bus. For example, to find the logic that makes x, = 1,

we scan all register transfer statements in Table and exiract those statements that have AR as
 SDUrCC,

DT, PC &= AR
D:Ts: PC « AR
Therefore, the Boolean function for x, is
s Ds;reitedﬁorlh,husnﬁ:nx =1 and 5,88, = 111. The
: / ot 2] :
mtiﬂ:ﬁ?;ﬁgﬁ ::m ms: ::::e applied to the n:ai_] inpﬂ.Jl of memo:yd. Thcnelfore. the
function for x, is the same as the one derived P""m'} for the read’ operation.
xp= R'T) + DTy + (D + Dy + DTy)
In & similar manner we can determine the gate logic for the other registers.

220

Com

P Xy S: Multiplexer
Ky ————y Encoder x, —+|5, busselect
R x, 5 inputs
Xy ——————p

Xz

Fig. 15 : Encoder for the base selection input
3.9 Design of Accumulator Logic

The circuits associated with the AC register are shown in Fig. The adder and logic cireuy
three sets of inputs. One set of 16 inputs comes from the outputs of AC. Another set of 14 inpe,
comes from the data register DR. A third set of eight inputs comes from the input register |
The outputs of the adder and logic circuit provide the data inputs for the register. In additip
is necessary 1o include logic gates for controlling the LD, INR and CLR in the register ang g,
controlling the operation of the adder and logic circuit.

13

% Abder and I Acumalno 1"

Froos it ——| kg = Fegiser

[circu A Tokn

Fooen FN PR =t
b
(8] INR TLR
Tl
s
paees

Fig. 16 : Circuits associated with AC
In order to design the logic associated with AC, it is necessary 10 go over the register transfe
statements in Table and extract all the statements that change the content of AC.
DyTs: AC « AC A DR

AND with DR
D,Tg¢ AC « AC + DR Add with DR
D,Ts: AC « DR Transfer from DR

14

PUTER Ogg . |
Ib‘!'k

| B

4 OF CoMPUTER ORGANIZAT 0y,
AR

221

PBy: ACI0-T) o« INpR Transfer from INPR
By AC « RT Complement

My AC & shr AC, AC(I15) — E Shift right

By AC & shr AC, AC(0) « E Shift left

B: AC « Clear

"BS: AC « AC +

. . Increment
from this list we can derive the control logic gates and the adder and logic circuit.

oplﬁ"l of AC Register

The gate structure that controls the LD, INR, and CLR inputs of AC is shown in Fig.. The

configuration is ‘?':"'“'_Ed from the control functions in the list above. The control function for
::clﬂf micmﬂpcral}un is rB ;. where r = D.I.I‘TJ and By, = IR(11). The output of u_.c IAND
gte that generates this control function is connectéd to the CLR input of the register. Similarly.
e output of the gate that implements the increment microoperation is connected 1o the INR input
of the register. The other seven microoperations are generated in the adder and logic circuit and
¢ loaded into AC at the proper time. The oulputs of the gates for each control I’uncltun is
narked with a symbalic name. These outputs are used in the design of the adder and logic circuit.

L]]
AC Tobu
L

L————-Clul

[From acder
el

LT

Fig. 17 : Gate structure for controlling the LD, INR and CLR of AC,

222

COoMPUTER Ogg

- OF COMPLUTER OI!GJ\.\'I]Q'nn\;
; :

e o 223
: \'2.-.1],” pe ion transh it
o \ -l operation transfers the bit from Acs _ logic circut
Adder and Logic Cimcuir . 5:::' of 16 Stages connected togethe, (i = 1). The complete adder and log
The adder and logic eircuil can be subdivided into 16 stages. with each stage COirg 4
10 one bit of AC.

The internal construction of the register is as shown in Fig,
that figure we note that each

load (LD) input is connected 1o the inputs of the AND gates. Figure shows one

stage (with the OR gates removed). The input is labeled 1; and the output AC(), w
tnput is enabled. the 16 inputs I fori=0.1. 2...... 15 are transferred 10 AC (0-15),

One stage of the adder and logic circuit consists of seven AND gates, one OR gae

full-adder (FA) as shown in Fig. The inputs of the gates with symbolic names
outputs of gates marked with the same
in Fig. is connected 1o

Lookj g
stage has a JK lip-Nop. two OR gates, and two AND:': M!
Stich A nk

Come f
symbolic name in Fig. For example, the inpuy fom g,

; 10 CPU Design

1 is the Ilgmirl of any computer system, The control unit (CU) and Arithmetic Logic EJ"“

L) 4 joinily known as central processing unit (CPU), As in the human body. all decisions
% are taken by the brain, similarly in 5 computer system all major calculation and comparison
et inside the CPU. CPU is also responsible for activating and controlling the operations
=® iher units of & computer system.

;‘Iﬂmtiﬁn

Sy
Ly

1

the output marked ADD in Fig.. Ay program ' Input Sworage Output —» Result

and Unin Unit Unit
Data T Y T
PRU aCw i H i
[i l !
; | :
AND Chpas of OR gaic in Fag. 5.3 | :]
ic o 1 i

Fig. 18 : One stage of adder and logie circuit

The AND operation is achieved
register DR{i). The AD o
One stage of the adder
transfer from INPR to AC
by inverting the bit value

by ANDing AC(i) with the corresponding bit in the datt
peration is obtained sing a binary adder similar to the one shown in Fig
uses & full-adder with the corresponding input and output carries. Th
is only for bits 0 through 7. The complement microoperation is obtai

in AC. The shift-right operation transfers the bits from AC(+ 1y 2

15

ertml I
| Unit (CL)

Central Processing Unit
(CPL}

Arithmetic
Logic
Unit (ALU)
Computer system is made up of integrated components = Input devices, output deivees,
storage unit, CPLI, thal work together 1o perform program execution.

its can not function unil they receive -
Input or output units can on . Hﬁm\
Set

signals from central processing unit. The same way, the
[cv]

sorage unit is of use with but CPU, So usefullm.:ss of
each unit depends on other units, and when all units are
put together, they form a system, .

The CPU is basically made up of three major parts ==
I Control Unit (CU)

L Arithmetic Logic Unit (ALU) and

3 Register set

The register set stores ¢
ALU performs the required operations
&MSM of information among the

ALU

i jion of the instructions. The
intermediate data used during the execution o y 1
: mﬁ‘:: execution the instructions. The control unit supervises
register and instructs all 1o perform the operations.

224

7.10.1 Conrrol Organizarion

CompuTeg Org AN

These are two major tvpes of control organization :-
Control Organisation

!z.‘m

I,

!

Hardwired Control Organization

l

In this organzation. the control logic is
implemented with gates, flipflops. decoders, and
other digital circuits. There is no concept of control
memory. Once a hardwired control is designed for
a particular task then any small modification in
task might need a complete circuit design all over
again. Hardwired control can be optimized to pro-
duce a fast mode of operation. It requires changes
in the wiring among the various components if the
design has to be modified or changed.

3.11 Arithmeric and Logic Unir (ALU) Design

Microprogrammed Conirgl D;m.,im.m

e
l

In this organization, the cony
infromation is stored in a contro| "l
The control memory is 4
initiate the required sequence ag%:
tions. Here no need 1o change Wit
maodification or any changes are

Any required changes or modificasioy,
can be done by updating the mj.:mm_
gram stored in control memory,

ALU is the combination of following 2 units :—
Arithmetic and Logic Unit (ALU)

Arthmetic Units

A microoperation is an elementary operation performed with the data stored in registers.
Microoperation can classified in following four categories :—

I. Register Transfer Microoperation
2. Arithmetic Microoperation

3. Logical Microoperation

4. Shift Microoperation

3.11.7 Registen Transfer Microoperarion

-

Logical Units

REQ—RS

16

225

' sier
genotes 3 wransfer of the conteny of register R, inio register R, i.c. information trall:I e
im'l register 1o another by means of replacement operator, Here content of R is rep
ﬂ‘\"ﬂg content of Ry though the content of R; remains unchanged.
G

(b) Individual bits
0-7)

. oF COMPUTER Oreavizamioy
i

(a) Register R

(e} bits divided into
o parts
(H) - Higher byte
(L)~ Lower byte
Fig. Block diagram of register _ -
To perform a particular register transfer, register transfer language is used. Every : ‘T‘;fﬂ
Jrtien in @ register transfer notation implies a hardware construction for implementing the transiet.

Control

Clr

Transfer from R; 1o Ry when P = |
i if (P = 1) then (R, « R;)
Where P is control signal generated from control circuit. ie. P 1 Ry « Ry
Basic symbol used in register transfer -

Example
R;. Ry MAR
Rj[l} - Th RJH-]

Meaning
Denote a register
Denote part of a register

Symbol
1. Letter
2. Parentheses ()

Lower byte]
Ry(H). Ry(8 — 15)
A I

Higher byte
irect L R; « R,,
jon transfer of 3
3 Amow « li;:nute ::r:.‘cl S,
Separates 1wo microoperations R; « Ry Ry < Ry
4. Comma :

226 Comprr 1

17

TER OEGANI?‘"‘(& gsC o COMPUTER ORGANIZATION 227
3.11.2 Anirhmeric Micreoperation here are 4-bit input (A & BY and 4-bi output (D), The four input from A (Ag. Aps 82 As) |
Basic arithmeric operations are as follows - girecthy o the X inpuls of bimary full nddcr' (FA). Eac: of the four input [‘ron:l |
2 Addition % Subtraction 2 Increment by By B,. B) -'r::c. connccted 10 the data input of the 4 » | multiplexcr. The multiplexer d:::
% Decrement < Shift apuls also ﬂ:CCLU’dC: L‘Cmﬂplclj\‘nl Inf B a5 second data input of multiplexer. Othnfr two data mgﬂn |
Symhbals Description ot Jogic — 0 n(Tg “ng:::‘-i-i -:Lhmh 15 a fixed Vniig‘gg value - 0 voltage for Iog.n: G.Md non |
.I,' i) « R, + R Content of R, + K, transferred 0 &, qolige (d:I:“é SEt:aio;1%:w2¢;emtc:;hr?ugh invester) as logic - 1 rcrtpmw;ﬂ:;t ——
S RyeR R,y Content of Ry ~ R, transferred to Ry Thﬂe i mnm;m 1 input carry C;; goes to the FA in the le
3R Ry I« complement of contents of R, position- o o fm"f one slage to the next.
4 Ry« Ry 4 2's complement of contents of R, Output of FA can be expressed s,
5. Ry« R+ Ry + R, complement of R, transferred 10 Ry (Subyryeg
6. Ry« Ry +1 Increment of content of R; by one ; on)
7. Ry «R -1 Decrementation of content of R, by one Do =Apt ¥y +Cy
Basic cu:r_lp!cmenl of an arithmetic cricuits is the parallel adder. By restrieting the data; b Dy : o -:YI iy C: i
to the adder, it is possible o obtain different types of arithmetic operation. Pty By Wha ety
4-bit a.rithmcuc circuits tion Tahble
o Select Input Output Microoperation
o S, | S| cml ¥ D=A+Y + Cin
Y - o [o]l o |8 D=A+B Addition
L 1] 2 , [1} 1} | B D=pA+B+1 Add with carry
il o Wik o o | 1o & D=A+B Subtract with borrow
= 2 . 0 | 1 & D=A+B+1 Subtraction
i Mo 1 0 0 0 D=A Transfer A
H s1 1 0 1 0 D=A+1 Increment A
Bl — I o 1’ 1 0 1 D=A-l Deecrement A
; MUX I @ 1 1 1 I D=A Transfer A
3
= X2 1 Logical Microoperations
13 Logic microoperations consider each bit of the register separately. Special symbaols are adopted
" I % fior the logic microoperations OR, AND, EX-OR, complement. Symbol * “will bc used to denote
! Mux Vi an OR microoperation and * » * symbol is used to denote an AND microoperation.
% 12| Logical Microoperations : :
=] e Boolean Function | Microoperation Deseription
W= B ———n, tofeo e
1 MUX fy = xy f+ A AB AND
=i V3 ooy Gz fe i AD AND
Cout G=x feA Transfer A

228

-

CoMPUTER O | i oF COMPUTER ORGANIZATI 0y

f.

fe A"B AND
-y e B Transfer B
s =xay fe ABB Exclusive OR
f=x+y fe AVB OR
3=(x+y) f+ AvE NOR
= Gay) f+ (A®BY Exclusive NOR
fo=y fe B Complement B
fu=x+y fe AvB OR
fiz=x fe A Complement A
fiy s g fe AvB OR
flg = (xyy fe A"B NAND
I_ﬂs= | e All Is Set all 1's
One Stage of Logic Circuit
]
: S—
Bl TE—D—0 mux—H
I P—
—D—
e O— 3
Function Table
Bl 52 Output (K1) Operation
Select
0 0 E=A'B AND
0 | E= AvB OR
! 0 E= A®B XOR
: ! E= A Complement

3.11.7 Shifr Microoperation

Shifi microoperation are use for serial transfer of data.
4-bit Shifter

18

| H“ sh_-ut!:'

shift = L:fi Operation

the right most position

i
Logical Shift

o Logical Shift Lefi (Shl)

« Logical Shift Righr (Shr)
| ylogical shift is one that trans-
jer *0 througgh the serial input.
| g« SHR, R, « Shr R,

| - bit shift to the left content

of register R, and a 1-bit shift
1o the right of the content of
register R,

gerial input transfers a bit into

Lshl

Shift Microoperation

229

|

Shift - Left Operation
The serial input transfer & bit
into the left most position

Control Organisation

1
Circular Shift

* Circular Shift
Left (Cil)
& Circular Shift
Right (Cir)
It is also known as rotate
operation. It circulate
the bits of the register
around the two ends
without loss of informa-
tion.

Re[Raz [« [Ri [R l‘-'"‘k,;— Cil R,

R, « Cir R,

lkn—liRn-:!]“'iRﬂ]Ol

0 [Ract Rz [= [Ra [Ro]~

L shr

I [0]Rop JeoRs [Ry

Arithmetic Shift

e Arithmetic Shift Left
(ashl)
e Arthmetic Shifi Righr
(ashr)
This operation shifts a signed
binary number to the left or right.
An arithmetic shift — Left
multiplies a binary number by
2. An arithmetic shift — Right
divides the number by 2.
Arithmetic shifis must leave the
sign bit unchanged because the
sign of the number remains the

[Ra i} [Ri] Ro 4§ same when it is multiplied or

el

i Cil

divided by 2.

4 A o 8 Y
Cir

A sign reversal oc-
curs if the bit in
R_, change in value
after the shift.

:‘f" arhl L
L 3 P D
(RO - lost)
Cil
[Rau[Raale- [Ri| Ro|
arhl
[Rea[Ru oo [Ra] 0]
(R, lost)
Cir

230 CoMPUTER Omrh\nb‘hn c OF COMPUTER ORG*NTZA'I'I()\'
N | s '

Select I - 23 '

| s“gg of ALU
Serial 0 for Shift Right (down) o€ .
iopur Ry | ! for Shift Lef (up) ;i /\‘
S 2 "‘——_‘
| S, f———]
0 b S"“—_| c
1 i
A, | One Stage of D
A, = [Arithmetic ;
Unit
—H, 2 Serial input
0
A, 1 i e,
P IR IL .
} = (for shift right) (for shift lefiy |
. | One Stage | ¢
——H, — | ofLogic -
0 B, - Unit
1 A,
S
She
——~H, A
0 Shl
1 f L
Ffunction Table for Arithmetic Logic Shift Unit
Operation Select
Serial Input (IL) ' Operation Function
| L] & Sl S\ Go) Sse=e
Function Table {FTrer el S o0 s
| 0 1 F=A+1 Transfer A
Select Output | 0 o 0 . Pl Additi
0 1 =h+
S H, H, H, H, L o : : FeA+B+I Add with Carry
0 IR Ay A A, 0 0 " i F=A+H Subtract with borrow
1 Ay Ay Ay IL | 0 0 1 ¥ 1 fodot 5+ Subtractioin
i 0 0 1 0 F=A-l Decrement A
3.12 Agithmeric Logic Shifr Unir 0ol o 1 : ; i/ Transfer A
Arithmetic unit, logic unit and shift unit is combined into one unit i.e. ALU, ‘ 0 | 0 0 x F=A"B AN[? i
Lo pl ik ek X L e
2

19

232 COMPUTER Ommm“%

0 1 1 0 x F=A@B XOR ing

0 1 1] x F=2a Complemen; 4
1 0 = x x F=S8hrA Shift Right 4

| | x x x F = Shl A Shift Lift o

The CPU of a small computer is a microprocessor. The CPU of a large CoOmpuger .

@ number of microprocessor. Each microprocessor in a large central processing upjy

i
I Pperf;
specified task within the CPU, i

3.17 Summarise View

3.13.1 Arithmetic and Logic Unit (ALU)

The function of an arithmetic and logic unit is perform arithmetic and
and ALU performs the following arithmetic and logic operation.

(i) Addition

(ii) Subtraction-

(iii) Multiplication

(iv) Division

(v) Logical AND

(vi) Logical OR

(vii) Logical EXCLUSIVE - OR

(viii) Complement (Logical NOT)

(ix) Increment (i.e. addition of 1)

(x) Decrement (i.c. subtraction of 1)

(xi) Left or right shift (the content of the accumu

(xif)Clear (the content of the accumulator

logic operation, Usuap,

lator can be shifted left or right by on bit)
or carry flag can be made ZET0).

. applications ma; contain on-chi
FPU. Such processors use either software for above menlizmd m“:thn:usmz?al ﬂpﬂ‘l;‘lm
in the microprocessor based system, The use
execution slower. Math processors speed
I ; r programming complexi "4
involved in a particular application.
3.13.2 Control Unit (CU) design

The control unit of a CPU controls the enti ration comp i i
of the CP“U really acts as the brain of thec ey e oy i 3
memory, input and output devices connected to the CPU, g fetches instruction from the memory,

s the instruction, interprets the instruction to know what tasks are 1o h-:-.mpel'ﬁm‘lﬂﬂt i

20

o OF CoMPUTER ORGANIZATION

233

. W
provides them for all operation. It OOHWI,S ;,11:. dau:sﬂl;’wf
memory). It provide status, control and timing signa

| iming and control signals, and
CPU and peripherals (including
and /O devices require.

#Ulﬂ“ the -cuﬂlr?| Dfﬂle‘ control I.III'lil the instructions are fetched from the memory nrlF aﬁ:;
for execution until all the instructions are excuted. For fetching and executing
‘dw'm'l the following steps are performed under its control:

 The address of the memory location where instruction lis, is placed on the address bus-
[nstruction is read from the memory,

(i) The instruction is sent to the decoding circuitary for decoding. b

(i) Addresses and data required for the execution of the instruction are read from the
memory.

(v) These data/addresses are sent to the other sections for processing.

["li]'l'hg result are sent to the memory or kept is some register.

(viijNecessary steps arc-taken for next instruction. For this the content of the program
counter is incremented.

& CPU contains a number of special purpose registers for different purposes. These are :
{i) Program Coumter (PC)
(i) Stack Pointer (SP)

(i) Status Register

(iv) Instruction Register (IR)

(v) Index Register

(vi) Memory Address Register (MAR)

(vii)Memory Buffer Register (MBR) or Data Register (DR)

All CPUs do not contain all of these special registers A powerful CPU contains most of them.

7.14 Design and Implementarion of a simple micro-souencer

In computer architecture and engineering, a sequencer or microsequencer generates the

| addresses used to step through the microprogram of a control store. It is used as a part of the

cortrol unit of a CPU or as astand alone generator for address ranges.
Usually the addresses are generated by same combination of a counter, a field from a

microinstruetion and some subset of the instruction register. A counter is _used for th.e typical case
the next micro instructions is the one of execute or other logic. Since CPU implement an
instruction set, its very useful to able to decode the instruction’s bit directly into the sequencer to

| select a set of microinstructions to perform a CPU's instructions.

Most) considerably more complex then lhis_ description suggest. T!le}’ tend
10 have mﬂfggénﬁ micromachines with specialized logic to detect and handle interface
‘ ween the micromachines.

234

CoMPUTER ORGay
h |2r\
315 F) . Tigy,
. EATURES of Pentium MicROpROCESSOR

The pentium is a high performance, superscalar, CISC micraprocessor deve]
corporation. It was introduced in the year 1993. It has 32-bit address bus and 64-bj; ¢
contains 3.1 million transistors. It is housed in a 273-pin grid amay package. The clock
for is d_il‘fer:nl versions are: 60-233MHz. It provides traditional memory page size of g
larger size of 4MB. It is suitable for multitasking/multiuser system. It is used in high.eny KB o
PCs, workstations and netwaork file servers where high speed data processing is requj
MIPS capability is 112 at 66MHz. Iis data transfer rate is 528MB/see at 66MHz, The cg:ﬂm.[“

Y I
aty buyy

power of pentium at 100MHz is 166MIPS. 100MHz Pentium is manufactured using 0.5 ,:f"'“z
3 layer process technology. 120MHz 3.3V Pentium uses 0.35 micron process technology, 1sge™
pentium uses 0.6 micron 4 layer process technology. mh
Block Diagram
HKB !
Branch
Instrusction o Target Buffe
158 Bits
Prefetch = ’
Buffer Control
ROM
Instroction
Deoder '
Control
Unit == i
V Pi
U Pipgy) J,” e
i In it
ALU | ALU Reghsters
{3z 32
Adder
Integer
i Rﬁ‘:‘" Multiplier
Controf AIFC i D

fRe
3.‘: | TLB-Translation Laokaside Buffer
Cache AlC=Advaced Interrupt Contraller

21

o OF CoMPUTER ORGANIZATION

235

SKB cache memories, one for code and the other for
x 3 math ¢g, oM ; lining
P Lwired functions. 1t is five o tep i e o cunlt I isupepaist. | AREP P“I::c 486
P pard” Though the ; es faster then the floating-point unit used in

i;ro?"’“ssor_;mhitmuw wwl‘:qltum Processor, for example. superscalar architecturé @

ﬂi“‘“ hitecture, Th i¢h incorporates more than one execution unit or pipeline is call
far arcRIeCture. "he superscalar architecture executes multiple instructions per clock
The Pentium is designed to have dual-pipeline architecture. The dual pipeline is known as
and V' pipeline. Both the pipeline

gt
alium Processor contain twy
erc is an O chip floating-point

& eline execute instructions in 5 stages. Each pipeline has
.LI F“pd arithmetic logic unit, Ei!dmss generation circuitary and data cache interface. It is capable
: ting two instruction simultaneously per clock cyele. This type of feature is generally

Fcﬂ'd"' in a RISC processor,
s

main advantage of pentium over the power PC is that it can run a large number of
M“’ds'ins software which is a powerful marketing advantage. The pinetum has the features
¢ parity-based internal error detection for both the instruction and data cache. tags and cache
(18s (translation lookside buffers), as well as for the microcode ROM. It contains a circuitry (0
sonitor the performance of one pentium with another. It has the features of the built-in error
jaection for multiprocessor servers not found in RISC chips, which is crucial to distribute
mputing. The pinetum processor id provided with branch prediction ability which is an adva.n.celd
omputing technique. ‘This technique was available in traditional mainframe computers. By this
wehnique the processor can prediet what instructions are to be exeeuted next.

(Raj. B.C.A. 2010)
{Raj. B.C.A. 2009)
(Raj. B.C.A. 2009)
(Raj. B.C.A. 2008)
(Raj. B.C.A. 2007)

Very Short Answer Type Questions (2 Marks each)

I. One kilo byte is.........
1. Bit is an abbreviation of
3. What does RAM and DRAM stands for.........

4. A multiplexer is a circuit With ...

5 A byte'is oo

Short Answer Type Questions {4 Marks each)

1. Explain design and implementation of a simple micro sequencer.
L What are the features of pentium processor

% RIL (Register Transfer Language) Define it.

. Explain the concept of inputioutput interfacing

5. Write short notes on

e ™
g

23 6 CoMpPUTER ORG"‘N‘ZA‘n
“ates ON

(a) Instruction execution cvele
(b) System bus

Long Answer Type Q};estions (li___Marks each)

1. Wl'fal is an 1/O processor 2 Why are /O processor used in large system.(Raj. B.C.A,
2. Explain the concept of input-output interfacing and 1/O processor. (Raj. B.C.A: "“06}
3. Explain the features of Pentium processor (Raj. B.C.A, i‘m’
4. Define RTL (Register Transfer Language) briefly. - 006
S. Draw a block diagram to illustrate the basic organization of a computer s

the function of thé logic units. . : (Rﬁ.te;caff_?”"i"
6. Write short notes on-)

(a) System Buses . ;
(b) Pentium Microprocessor '
(c) Asynchronous data transfer
7. What is the design of a simple sequencer ? Explain the features of pentium micoprocesgy
What is memory interfaces and memory organization. Explain in detail.)
9. Explain in briefly-
(i) Instruction cycle and system buses
(i) RTL (Register Transfer Language) :
10. What do you understand by register Transfer ? Explain the use of register transfer language

Il- w}'lﬂl iq Hard diclk 7 Fenlain tha varane haeddisl fatasfhaa 0

22

